ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-09-20
    Description: Self-healing and transverse accelerating optical vortices are generated via modulating Gaussian beams through subsequent liquid crystal q-plate and polarization Airy mask. We analyze the propagation dynamics of these vortex Airy beams, and find that they possess the features of both optical vortices and Airy beams. Topological charges and characteristics of nondiffraction, self-healing, and transverse acceleration are experimentally verified. In addition, vortex Airy beams with both topological charge and radial index are demonstrated and mode switch among Gaussian, vortex, vector, Airy beams and their combinations can be acquired easily. Our design provides a flexible and highly efficient way to generate unique optical vortices with self-healing and transverse acceleration properties, and facilitates prospective applications in optics and photonics.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-04
    Description: A graphene/LiNbO 3 hybrid device is used to investigate the acoustic induced charge transport in chemical doped graphene. The chemical doping of graphene via its physisorption of gas molecules affects the surface acoustic wave (SAW) charge carrier transport in a manner different from electric field drift. That transport induces doping dependent macroscopic acoustoelectric current. The chemical doping can manipulate majority carriers and induces unique acoustoelectric features. The observation is explained by a classical relaxation model. Eventually the device based on acoustoelectric current is proved to outperform the common chemiresistor for chemicals. Our finding provides insight into acoustic charge carrier transport during chemical doping. The doping affects interaction of carriers with SAW phonon and facilitates the understanding of nanoscale acoustoelectric effect. The exploration inspires potential acoustoelectric application for chemical detection involving emerging 2D nanomaterials.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...