ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (17)
  • American Association for the Advancement of Science  (3)
  • 1
    Publication Date: 1998-07-31
    Description: For the six months from 1 October 1993 to 1 April 1994 the recordings of the IMAGE magnetometer network have been surveyed in a search for large-amplitude travelling convection vortices (TCVs). The restriction to large amplitudes (〉100 nT) was chosen to ensure a proper detection of evens also during times of high activity. Readings of all stations of the northern half of the IMAGE network were employed to check the consistency of the ground signature with the notation of a dual-vortex structure moving in an azimuthal direction. Applying these stringent selection criteria we detected a total of 19 clear TCV events. The statistical properties of our selection resemble the expected characteristics of large-amplitude TCVs. New and unexpected results emerged from the superposed epoch analysis. TCVs tend to form during quiet intervals embedded in moderately active periods. The occurrence of events is not randomly distributed but rather shows a clustering around a few days. These clusters recur once or twice every 27 days. Within a storm cycle they show up five to seven days after the commencement. With regard to solar wind conditions, we see the events occurring in the middle of the IMF sector structure. Large-amplitude TCVs seem to require certain conditions to make solar wind transients 'geoeffective', which have the tendency to recur with the solar rotation period.Key words. Ionosphere (Aural ionosphere; Ionosphere- magnetosphere interactions) · Magnetospheric Physics (current system)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-05-31
    Description: The response of the dayside ionospheric flow to a sharp change in the direction of the interplanetary magnetic field (IMF) measured by the WIND spacecraft from negative Bz and positive By, to positive Bz and small By, has been studied using SuperDARN radar, DMSP satellite, and ground magnetometer data. In response to the IMF change, the flow underwent a transition from a distorted twin-cell flow involving antisunward flow over the polar cap, to a multi-cell flow involving a region of sunward flow at high latitudes near noon. The radar data have been studied at the highest time resolution available (~2 min) to determine how this transition took place. It is found that the dayside flow responded promptly to the change in the IMF, with changes in radar and magnetic data starting within a few minutes of the estimated time at which the effects could first have reached the dayside ionosphere. The data also indicate that sunward flows appeared promptly at the start of the flow change (within ~2 min), localised initially in a small region near noon at the equatorward edge of the radar backscatter band. Subsequently the region occupied by these flows expanded rapidly east-west and poleward, over intervals of ~7 and ~14 min respectively, to cover a region at least 2 h wide in local time and 5° in latitude, before rapid evolution ceased in the noon sector. In the lower latitude dusk sector the evolution extended for a further ~6 min before quasi-steady conditions again prevailed within the field-of-view. Overall, these observations are shown to be in close conformity with expectations based on prior theoretical discussion, except for the very prompt appearance of sunward flows after the onset of the flow change.Key words. Ionosphere (Auroral ionosphere) · Magnetospheric physics (Magnetopause · cusp · and boundary layers; Magnetosphere · ionosphere interaction)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-10-31
    Description: An analysis of the low frequency geomagnetic field fluctuations at an Antarctic (Terra Nova Bay) and a low latitude (L'Aquila, Italy) station during the Earth's passage of a coronal ejecta on April 11, 1997 shows that major solar wind pressure variations were followed at both stations by a high fluctuation level. During northward interplanetary magnetic field conditions and when Terra Nova Bay is close to the local geomagnetic noon, coherent fluctuations, at the same frequency (3.6 mHz) and with polarization characteristics indicating an antisunward propagation, were observed simultaneously at the two stations. An analysis of simultaneous measurements from geosynchronous satellites shows evidence for pulsations at approximately the same frequencies also in the magnetospheric field. The observed waves might then be interpreted as oscillation modes, triggered by an external stimulation, extending to a major portion of the Earth's magnetosphere. Key words. Magnetospheric physics (MHD waves and instabilities; solar wind-magnetosphere interactions)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-04-30
    Description: Pc3 geomagnetic field fluctuations detected at low latitude (L'Aquila, Italy) during the passage of a high velocity solar wind stream, characterized by variable interplanetary magnetic field conditions, are analyzed. Higher frequency resonant fluctuations and lower frequency phenomena are simultaneously observed; the intermittent appearance and the variable frequency of the longer period modes can be well interpreted in terms of the variable IMF elements; moreover their polarization characteristics are consistent with an origin related to external waves propagating in antisunward direction. A comparison with simultaneous observations performed at Terra Nova Bay (Antarctica) provides additional evidence for a clear relationship between the IMF and Pc3 pulsations also at very high latitudes.Key words. Magnetospheric physics (MHD waves and instabilities; solar wind · magnetosphere interactions)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-09-30
    Description: A double discontinuity is a compound structure composed of a slow shock layer and an adjoining rotational discontinuity layer on the postshock side. We use high-resolution data from Geotail and Wind spacecraft to examine the interior structure within the finite thickness of the discontinuity at the plasma sheet-lobe boundary and found that recognizable MHD structures at the boundary can be stand-alone slow shocks or double discontinuities. The plasma density increases significantly and the magnetic field intensity decreases significantly across the interior of the slow shock layer. Through the rotational layer, the magnetic field rotates about the normal direction of the shock surface, as the plasma density and the magnetic field intensity remain nearly unchanged. The rotational angle can vary over a wide range. We notice that the observations of double discontinuities are no less frequent than the observations of stand-alone slow shocks. Identification of slow shocks and double discontinuities infers that plasma and magnetic field lines continuously move across the boundary surface from the lobe into the plasma sheet, and there is a conversion of magnetic field energy into plasma thermal energy through the slow shock layer. The double discontinuities also allows for a rapid rotation of the postshock magnetic field lines immediately behind the shock layer to accommodate the environment of the MHD flow in the plasma sheet region.Key words. Magnetospheric physics (plasma sheet) Space plasma physics (discontinuities; shock waves)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-07-31
    Description: Directional discontinuities (DD) from 5 missions at 7 different locations between 0.3 and 19 AU and −80° and +10° in the 3D heliosphere are investigated during minimum solar activity. The data are surveyed using the identification criteria of Burlaga (1969) (B) and Tsurutani and Smith (1979) (TS). The rate of occurrence depends linearly on the solar wind velocity caused by the geometric effect of investigating a larger plasma volume if the solar wind velocity νsw increases. The radial dependence is proportional to r–0.78 (TS criterion) and r–1.28 (B criterion), respectively. This dependence is not only due to an increasing miss rate with increasing distance. The DDs must be unstable or some other physical effect must exist. After normalization of the daily rates to 400 km/s and 1 AU, no dependence on heliographic latitude or on solar wind structures is observable. This means that the DDs are uniformly distributed on a spherical shell. Normalized 64 DD per day are identified with both criteria. But large variations of the daily rate still occur, indicating that other influences must exist. The ratio of the rates of rotational (RDs) and tangential discontinuities (TDs) depends on the solar wind structures. In high speed streams, relatively more RDs exist than in low speed streams. In the inner heliosphere (r 〈 10 AU), no radial or latitudinal dependence of the portions of the DD types occur. 55% clear RDs, 10% clear TDs and 33% EDs (either discontinuities) are observed, but the portions differ with regard to the criteria used. In the middle heliosphere (10 AU〈 r 〈 40 AU), the DD types are more uniformly distributed. The distribution of the directional change ω over the transition evolves to an increase of smaller ω with increasing distance from the sun. The evolution is yielded by the anisotropic RDs with small ω. The spatial thickness dkm in kilometers increases with distance. The thickness drg normalized to the proton gyro radius decreases by a factor of 50 between 0.3 and 19 AU, from 201.3 rg down to 4.3 rg. In the middle heliosphere, the orientation of the normals relative to the local magnetic field is essentially uniform except for the parallel direction where no DDs occur. This indicates that RDs propagating parallel to B play a special role. In addition, in only a few cases is [υ] parallel to [B / ρ], which is required by the MHD theory for RDs. The DDs have strongly enhanced values of proton gyro radius rg for ω ~ 90°. In contrast, in the inner heliosphere, only a small increase in rg with ω is observed.Key words. Interplanetary physics (discontinuities; interplanetary magnetic fields) – Space plasma physics (discontinuities)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-11-29
    Description: We identified 17 magnetic clouds (MCs) with durations longer than 30 h, surveying the solar wind data obtained by the WIND and ACE spacecraft during 10 years from 1995 through 2004. Then, the magnetic field structures of these 17 MCs were analyzed by the technique of the least-squares fitting to force-free flux rope models. The analysis was made with both the cylinder and torus models when possible, and the results from the two models are compared. The torus model was used in order to approximate the curved portion of the MCs near the flanks of the MC loops. As a result, we classified the 17 MCs into 4 groups. They are (1) 5 MC events exhibiting magnetic field rotations through angles substantially larger than 180° which can be interpreted only by the torus model; (2) 3 other MC events that can be interpreted only by the torus model as well, though the rotation angles of magnetic fields are less than 180°; (3) 3 MC events for which similar geometries are obtained from both the torus and cylinder models; and (4) 6 MC events for which the resultant geometries obtained from both models are substantially different from each other, even though the observed magnetic field variations can be interpreted by either of the torus model or the cylinder model. It is concluded that the MC events in the first and second groups correspond to those cases where the spacecraft traversed the MCs near the flanks of the MC loops, the difference between the two being attributed to the difference in distance between the torus axis and the spacecraft trajectory. The MC events in the third group are interpreted as the cases where the spacecraft traversed near the apexes of the MC loops. For the MC events in the fourth group, the real geometry cannot be determined from the model fitting technique alone. Though an attempt was made to determine which model is more plausible for each of the MCs in this group by comparing the characteristics of associated bidirectional electron heat flows, the results were not very definitive. It was also found that the radii of the flux ropes obtained from the torus fitting tend to be generally smaller than those obtained from the cylinder fitting. This result raises a possible problem in estimating the magnetic flux and helicity carried away from the Sun by the MCs.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-03-07
    Description: Interplanetary magnetic clouds (MCs) have been identified for the first 8.6 years of the WIND mission, and their magnetic field structures have been parameter-fitted by a static, force free, cylindrically-symmetric model (Lepping et al., 1990) with various levels of success. This paper summarizes various aspects of the results of the model fitting by providing: seven estimated model fit-parameter values for each of the 82 MCs found, their objectively determined quality estimates, closest approach vectors (in two coordinate frames), fit-parameter errors for the cases of acceptable quality (50 cases, or 61%), axial magnetic fluxes, axial current densities, and total axial current - as well as some examples of MC profiles for various conditions and "categories" for each case (e.g. Bz: N→S or S→N, etc.). MC quality is estimated from a quantitative consideration of a large set of parameters, such as the chi-squared of the model fit, degree of asymmetry of the B profile, and a comparison of two means of estimating radius. This set of MCs was initially identified by visual inspection of relevant field and plasma data. Each resulting MC candidate is then tested through the use of the MC parameter model, for various adjusted durations to determine the best fit, which helps to refine the boundary-times. The resulting MC set is called Set 1. Another, larger, set (Set 2) of MCs is identified through an automated program whose criteria are based on general MC plasma and field characteristics at 1AU determined through past experience. Set 1 is almost fully contained within Set 2, whose frequency of occurrence better matches that of the sunspot cycle than Set 1. The difference-set (Set 2-Set 1) is referred to as the magnetic cloud-like (MCL) set, whose members do not very well represent good flux ropes through modeling. We present a discussion of how a MC's front boundary is specifically identified in terms of multi-parameter considerations (i.e. any one or more of: increase in B, directional discontinuity, magnetic hole in B, drop in proton plasma beta, B-fluctuation level change, proton temperature drop, etc.), as well as through the application of the flux rope model. Also presented are examples of unusual MCs, as well as some commonly occurring relationships, such as the existence and frequency (approx. 1/2 the time) of upstream interplanetary shocks, and less frequent internal shocks.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-08-18
    Description: This study is motivated by the unusually low number of magnetic clouds (MCs) that are strictly identified within interplanetary coronal mass ejections (ICMEs), as observed at 1 AU; this is usually estimated to be around 30% or lower. But a looser definition of MCs may significantly increase this percentage. Another motivation is the unexpected shape of the occurrence distribution of the observers' "closest approach distances" (measured from a MC's axis, and called CA) which drops off somewhat rapidly as |CA| (in % of MC radius) approaches 100%, based on earlier studies. We suggest, for various geometrical and physical reasons, that the |CA|-distribution should be somewhere between a uniform one and the one actually observed, and therefore the 30% estimate should be higher. So we ask, When there is a failure to identify a MC within an ICME, is it occasionally due to a large |CA| passage, making MC identification more difficult, i.e., is it due to an event selection effect? In attempting to answer this question we examine WIND data to obtain an accurate distribution of the number of MCs vs. |CA| distance, whether the event is ICME-related or not, where initially a large number of cases (N=98) are considered. This gives a frequence distribution that is far from uniform, confirming earlier studies. This along with the fact that there are many ICME identification-parameters that do not depend on |CA| suggest that, indeed an MC event selection effect may explain at least part of the low ratio of (No. MCs)/(No. ICMEs). We also show that there is an acceptable geometrical and physical consistency in the relationships for both average "normalized" magnetic field intensity change and field direction change vs. |CA| within a MC, suggesting that our estimates of |CA|, BO (magnetic field intensity on the axis), and choice of a proper "cloud coordinate" system (all needed in the analysis) are acceptably accurate. Therefore, the MC fitting model (Lepping et al., 1990) is adequate, on average, for our analysis. However, this selection effect is not likely to completely answer our original question, on the unexpected ratio of MCs to ICMEs, so we must look for other factors, such as peculiarities of CME birth conditions. As a by-product of this analysis, we determine that the first order structural effects within a MC due to its interaction with the solar wind, plus the MC's usual expansion at 1 AU (i.e., the non-force free components of the MC's field) are, on average, weakly dependent on radial distance from the MC's axis; that is, in the outer reaches of a typical MC the non-force free effects show up, but even there they are rather weak. Finally, we show that it is not likely that a MC's size distribution statistically controls the occurrence distribution of the estimated |CA|s.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2002-07-31
    Description: The extreme ultraviolet (EUV) signatures of a solar lift-off, decametric and kilometric radio burst emissions and energetic particle (EP) inner heliospheric signatures of an interplanetary shock, and in situ identification of its driver through solar wind observations are discussed for 12 isolated halo coronal mass ejections (H-CMEs) occurring between December 1996 and 1997. For the aforementioned twelve and the one event added in the discussion, it is found that ten passed several necessary conditions for being a "Sun-Earth connection". It is found that low corona EUV and Ha chromospheric signatures indicate filament eruption as the cause of H-CME. These signatures indicate that the 12 events can be divided into two major subsets, 7 related to active regions (ARs) and 5 unrelated or related to decayed AR. In the case of events related to AR, there is indication of a faster lift-off, while a more gradual lift-off appears to characterize the second set. Inner heliospheric signatures – the presence of long lasting enhanced energetic particle flux and/or kilometric type II radio bursts – of a driven shock were identified in half of the 12 events. The in situ (1 AU) analyses using five different solar wind ejecta signatures and comparisons with the bidirectional flow of suprathermal particles and Forbush decreases result in indications of a strong solar wind ejecta signatures for 11 out of 12 cases. From the discussion of these results, combined with work by other authors for overlapping events, we conclude that good Sun-Earth connection candidates originate most likely from solar filament eruptions with at least one of its extremities located closer to the central meridian than ~ 30° E or ~ 35° W with a larger extension in latitudinal location possible. In seven of the twelve cases it appears that the encountered ejecta was driving a shock at 1 AU. Support for this interpretation is found on the approximately equal velocity of the shock and the ejecta leading-edge. These shocks were weak to moderate in strength, and a comparison of their transit time with their local speed indicated a deceleration. In contradistinction with this result on shocks, the transit time versus the local speed of the ejecta appeared either to indicate that the ejecta as a whole traveled at constant speed or underwent a small amount of acceleration. This is a result that stands for cases with and without fast stream observations at their rear end. Seven out of twelve ejecta candidate intervals were themselves interplanetary magnetic cloud (IMC) or contained a previously identified IMC. As a by-product of this study, we noticed two good ejecta candidates at 1 AU for which observation of a H-CME or CME appears to be missing.Key words. Radio science (remote sensing); Solar physics, astrophysics and astronomy (flares and mass ejections); Space plasma physics (nonlinear phenomena)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...