ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Alfred Wegener Institute for Polar and Marine Research  (1)
  • Coopernicus  (1)
  • Elsevier  (1)
Collection
  • Articles  (3)
Publisher
Years
  • 1
    Publication Date: 2016-11-22
    Description: The hypothesis of this work was that exposure to diverse abiotic factors in two sites with different sediment and iron input (Peñón de Pesca: low impact; Island D: high impact, both areas in Potter Cove, King George Island, Antarctica) affects the physiological and oxidative profile of Gigartina skottsbergii and Himantothallus grandifolius. Daily metabolic carbon balance was significantly lower in both macroalgae from Island D compared to Peñón de Pesca. Lipid radical (LRradical dot) content was significantly higher in G. skottsbergii collected from Island D compared to Peñón de Pesca. In contrast, H. grandifolius showed significantly lower values in Island D compared to Peñón de Pesca. The β-carotene (β-C) content was significantly lower in G. skottsbergii from Island D compared to Peñón de Pesca, and the ratio LRradical dot/β-C showed a 6-fold increase in Island D samples compared to Peñón de Pesca. On the other hand, β-C content in H. grandifolius showed no significant differences between both areas. The LRradical dot/β-C content ratio in this alga was significantly lower (26%) in Island D as compared to Peñón de Pesca. Total iron content was significantly higher in both macroalgae from Island D compared to samples from Peñón de Pesca. Results with G. skottsbergii suggested changes in the oxidative cellular balance, probably related to the higher environmental iron in Island D as compared to Peñón de Pesca. The species H. grandifolius seems to be better adapted to the environmental conditions especially through a higher antioxidant capacity to cope with oxidative stress.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung (Reports on Polar and Marine Research), Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 567, 191 p., ISSN: 1618-3193
    Publication Date: 2018-09-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-09-29
    Description: The Western Antarctic Peninsula (WAP) region is one of the most rapidly warming on earth since the last 50 yr. The WAP glaciers currently contribute one third of the melt water to global sea level rise. Climate warming is supposed to induce important changes in polar ecosystems, from microbial communities to apex predators’ levels. Macroalgae are the main biomass producers in Potter Cove located at King George Island, the biggest island of the South Shetland Arc. They are sensitive to climate change factors such as suspended particulate matter (SPM). Macroalgae presence and absence data were used to test SDMs suitability and, simultaneously, to assess the environmental response of macroalgae as well as to model four scenarios of distribution shifts by varying SPM conditions due to climate change. Species distribution models (SDM) predict species occurrence based on statistical relationships with environmental conditions. The R-package ‘biomod2’ which includes 10 different SDM techniques and 10 different evaluation methods was used in this study. According to the averaged evaluation scores of Relative Operating Characteristics (ROC) and True scale statistics (TSS) by models, those methods based on a multitude of decision trees such as Random Forest and Classification Tree Analysis, reached the highest predictive power followed by generalized boosted models (GBM) and maximum-entropy approaches (Maxent). The final ensemble model (EM) used 135 of 200 calculated models (TSS 〉 0.7) and identified hard substrate and SPM as the most influencing parameters followed by distance to glacier, total organic carbon (TOC), bathymetry and slope. The modeled current status of macroalgae distribution results in only 18.25% of earlier estimated areas populated by macroalgae in Potter Cove. The climate change scenarios show an invasive reaction of the macroalgae in case of less SPM and a retreat of the macroalgae in case of higher assumed SPM values.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...