ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This Letter observes collapse and intensification of the two parameter (b,c) "Lissajous-elliptic'' vortex ring. Laboratory and direct numerical studies of this ring are proposed to elucidate near-singular and intermittent fluid phenomena at very high Reynolds number. Quantifications of single filament Biot–Savart numerical simulations with various core "radii'' show that collapse may be nonmonotonic in time. In the collapsing region, the largest positive strain-rate eigenvalue, α, is off the filament and exhibits self-similar, singular-like behavior. A signature of collapse is found in the local approach to zero of the filament energy density in the collapsing regions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AWI
    In:  EPIC3POLEX, annual meeting, Potsdam (virtual meeting), Germany, 2020-09-29-2020-10-01Potsdam, AWI
    Publication Date: 2020-11-06
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    EGU
    In:  EPIC3EGU General Assembly 2020, Vienna, 2020-05-04-2020-05-08Vienna, EGU
    Publication Date: 2020-06-22
    Description: The calculation of the near-surface turbulent fluxes of energy and momentum in climate and weather prediction models requires transfer coefficients. Currently used parametrizations of these coefficients are based on stability functions derived from measurements over land and not over sea ice. However, recently, a non-iterative parametrization has been proposed by Gryanik and Lüpkes (2018), which can be applied to climate and weather prediction models as well but uses stability functions of Grachev et al. (2007). These functions had been obtained from measurements during the Surface Heat Budget over the Arctic Ocean campaign (SHEBA) and thus from measurements over sea ice. A drawback of the scheme of Gryanik and Lüpkes (2018) is that there is still some complexity due to the complexity of the SHEBA based functions. Thus new stability functions are proposed for the stable boundary layer, which are also based on the SHEBA measurements but avoid the complexity. It is shown that the new functions are superior to the former ones with respect to the representation of the measured relationship between the Obukhov length and the bulk Richardson number. Moreover, the resulting transfer coefficients agree slightly better with the SHEBA observations in the very stable range. Nevertheless, the functions fulfill the same criteria of applicability as the earlier functions and contain furthermore as an extension a dependence on the neutral Prandtl number. Applying the new functions, an efficient non-iterative parametrization of the near-surface turbulent fluxes of momentum and heat is developed where transfer coefficients result as a function of the bulk Richardson number (Rib) and roughness parameters. The new transfer coefficients, which are recommended for weather and climate models, agree well with the SHEBA data in a large range of stability (0〈 Rib〈0.5) and with those based on the Dyer-Businger functions in the range Rib 〈0.08.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AWI
    In:  EPIC3Workshop AWI research program Subtopic 2.1 Warming Climates, AWI Bremerhaven, 2022-08-26-2022-08-26Bremerhaven, AWI
    Publication Date: 2022-10-04
    Description: The polar atmospheric surface layer is often stably stratified, which strongly influences turbulent transport processes between the atmosphere and sea ice/ocean. Transport is usually parametrized applying Monin Obukhov Similarity Theory (MOST) which delivers transfer coefficients as a function of stability parameters (see below). In a series of papers (Gryanik and Lüpkes, 2018; Gryanik et al., 2020,2021; Gryanik and Lüpkes, 2022) it has been shown that differences between existing parametrizations are large, especially for strong stability. One reason is that they are based on different data sets, for which the origin of differences is still unclear. In this situation Gryanik et al. (2021) as well as Gryanik and Lüpkes (2022) proposed a numerically efficient method, which can be used for most of the existing data sets and their specific stability dependences. A package of parametrization resulted that is suitable for its application in weather prediction and climate models. Especially, calculation of fluxes over sea ice were improved. Combined with latest parametrizations of surface roughness it has a large impact on large scale fields as shown recently by Schneider et al. (2021) who applied some members of the package.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...