ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (4)
  • Copernicus  (2)
  • EGU General Assembly 2016  (1)
  • 1
    Publication Date: 2016-08-17
    Description: The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean–atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-01
    Description: The city of Venice and the surrounding lagoonal ecosystem are highly vulnerable to variations in relative sea level. In the past ∼150 years, this was characterized by an average rate of relative sea-level rise of about 2.5 mm/year resulting from the combined contributions of vertical land movement and sea-level rise. This literature review reassesses and synthesizes the progress achieved in quantification, understanding and prediction of the individual contributions to local relative sea level, with a focus on the most recent studies. Subsidence contributed to about half of the historical relative sea-level rise in Venice. The current best estimate of the average rate of sea-level rise during the observational period from 1872 to 2019 based on tide-gauge data after removal of subsidence effects is 1.23 ± 0.13 mm/year. A higher – but more uncertain – rate of sea-level rise is observed for more recent years. Between 1993 and 2019, an average change of about +2.76 ± 1.75 mm/year is estimated from tide-gauge data after removal of subsidence. Unfortunately, satellite altimetry does not provide reliable sea-level data within the Venice Lagoon. Local sea-level changes in Venice closely depend on sea-level variations in the Adriatic Sea, which in turn are linked to sea-level variations in the Mediterranean Sea. Water mass exchange through the Strait of Gibraltar and its drivers currently constitute a source of substantial uncertainty for estimating future deviations of the Mediterranean mean sea-level trend from the global-mean value. Regional atmospheric and oceanic processes will likely contribute significant interannual and interdecadal future variability in Venetian sea level with a magnitude comparable to that observed in the past. On the basis of regional projections of sea-level rise and an understanding of the local and regional processes affecting relative sea-level trends in Venice, the likely range of atmospherically corrected relative sea-level rise in Venice by 2100 ranges between 32 and 62 cm for the RCP2.6 scenario and between 58 and 110 cm for the RCP8.5 scenario, respectively. A plausible but unlikely high-end scenario linked to strong ice-sheet melting yields about 180 cm of relative sea-level rise in Venice by 2100. Projections of human-induced vertical land motions are currently not available, but historical evidence demonstrates that they have the potential to produce a significant contribution to the relative sea-level rise in Venice, exacerbating the hazard posed by climatically induced sea-level changes.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 33 . pp. 1990-1999.
    Publication Date: 2018-04-10
    Description: Intrinsic oscillations of stable geophysical surface frontal currents of the unsteady, nonlinear, reduced-gravity shallow-water equations on an f plane are investigated analytically and numerically. For frictional (Rayleigh) currents characterized by linear horizontal velocity components and parabolic cross sections, the primitive equations are reduced to a set of coupled nonlinear ordinary differential equations. In the inviscid case, two periodic analytical solutions of the nonlinear problem describing 1) the inertially reversing horizontal displacement of a surface frontal current having a fixed parabolic cross section and 2) the cross-front pulsation of a coastal current emerging from a motionless surface frontal layer are presented. In a linear and in a weakly nonlinear context, analytical expressions for field oscillations and their frequency shift relative to the inertial frequency are presented. For the fully nonlinear problem, solutions referring to a surface frontal coastal current are obtained analytically and numerically. These solutions show that the currents oscillate always superinertially, the frequency and the amplitude of their oscillations depending on the magnitude of the initial disturbance and on the squared current Rossby number. In a linear framework, it is shown that disturbances superimposed on the surface frontal current are standing waves within the bounded region, the frequencies of which are inertial/superinertial for the first mode/higher modes. In the same frame, a zeroth mode, which could be interpreted as the superposition of an inertial wave on a background vorticity field, would formally yield subinertial frequencies. For surface frontal currents affected by Rayleigh friction, it is shown that the magnitude of the mean current decays according to a power law and that the oscillations decay faster, because this decay follows an exponential law. Implications of the intrinsic oscillations and of their rapid dissipation for the near-inertial motion in an active ambient ocean are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 1567-1573.
    Publication Date: 2020-08-04
    Description: The analysis of high-resolution oceanographic data referring to velocity measurements carried out by means of a vessel-mounted acoustic Doppler current profiler on 12 November 2000 in the equatorial Atlantic, at 44°W between 4.5° and 6°N, reveals the presence of three large-amplitude internal solitary waves superimposed on the velocity field associated with the North Equatorial Countercurrent (NECC). These waves were found in the deep ocean, more than 500 km off the continental shelf and far from regions of topographic variations. They propagated toward the north-northeast, strongly inclined with respect to the main axis of the NECC and perpendicular to the Brazilian shelf, as well as to the North Brazil Current, and were characterized by maximum horizontal velocities of about 2 m s−1 and maximum vertical velocities of about 20 cm s−1. The large magnitudes of the measured velocities indicate that the observed waves represent disturbances evolving in a strongly stratified ocean. The distance separating the waves (about 70 km) indicates that the observed features cannot be considered as elements of a single train of internal solitary waves. The waves consist, instead, of truly disconnected, pulselike intense solitary disturbances. This behavior, which strongly differs from that typically observed for trains of tidally generated internal solitary waves, indicates that different mechanisms were possibly involved in their generation and/or evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 31 . pp. 3030-3044.
    Publication Date: 2018-04-06
    Description: The dynamics of the Rhine outflow plume in the proximity of the river mouth is investigated by using remote sensing data and numerical simulations. The remote sensing data consist of 41 synthetic aperture radar (SAR) images acquired by the First and Second European Remote Sensing satellites ERS-1 and ERS-2 over the outflow region of the river Rhine. Most of them show sea surface signatures of oceanic phenomena, for example, surface current and wind variations, ship wakes, and oil slicks. In particular, in 36 of these images pronounced frontal features are visible as narrow zones of mainly enhanced, sometimes enhanced/reduced radar backscatter that can be associated with the Rhine surface front. Within the area enclosed by the frontal line, large zones characterized by a lower radar backscatter than in the outer area are often visible. The analysis of the ERS SAR images suggests that the form and the location of the frontal features are mainly linked to the semidiurnal tidal phase in the outflow region, although their variability suggests also that they weakly depend on river discharge, residual currents, and neap-spring tidal cycle. In order to test this observational hypothesis, the results obtained from the analysis of the ERS SAR images are compared with the results obtained from the numerical simulation of the hydrodynamics of the Rhine outflow region carried out using a two-layer, frontal model, which is based on the nonlinear, hydrostatic shallow-water equations on an f plane. The model is forced by prescribing tidal and residual currents and river discharge at the open boundaries. Several simulations are performed by varying the values of these forcing parameters. The numerical results corroborate the observational conjecture: It is found that the form and the location of the simulated interface outcropping lines in the proximity of the river mouth are mainly determined by the semidiurnal tidal phase in the outflow region and that river discharge, residual currents, and neap-spring tidal cycle contribute only secondarily to their determination. Inserting the simulated surface velocity field into a simple radar-imaging model that relates the modulation of the backscattered radar power to the surface velocity convergence in radar look direction, narrow, elongated bands of enhanced radar backscatter emerge near the model frontal line while patches of low radar backscatter appear within the simulated Rhine plume area. The consistency of the model results with the results obtained from the analysis of the SAR images enables one to infer a mean spatial and temporal evolution of the Rhine outflow plume over a semidiurnal tidal cycle from the analysis of spaceborne SAR images acquired during different tidal cycles over the Rhine outflow area and suggests the possibility of using numerical modeling, in conjunction with the analysis of spaceborne measurements, for monitoring the oceanic variability in the Rhine outflow area
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 188-201.
    Publication Date: 2018-04-06
    Description: Aspects of the decay of stable frontal warm-core eddies in the deep ocean are investigated using a new numerical layered “frontal” model that solves the nonlinear, reduced-gravity, shallow-water equations for a horizontally inhomogeneous, viscous fluid on an f plane. After a discussion on aspects of the numerical techniques implemented to allow for the eddy expansions and contractions at the sea surface, for the first time the capability of a numerical model of reproducing the evolution of analytical nonstationary frontal vortices is explored. This step is necessary, as far as different phenomena related to the dynamics of these oceanic features are to be studied numerically. In fact the comparison between numerical and analytical inviscid solutions allows for a quantification of the numerical dissipation affecting the simulated solutions. This dissipation is found to be very small in this numerical model: The simulated lifetimes are larger than those of most of the frontal eddies observed in the World Ocean. On this basis, the eddy decay due to interfacial (linear and quadratic) friction, harmonic horizontal momentum diffusion, as well as linear ambient-water entrainment is investigated. It is found that interfacial friction represents a much more efficient mechanism than horizontal diffusion and water entrainment in inducing the eddy decay as well as in damping the eddy pulsations. It is thus suggested that internal wave radiation due to vortex pulsation can represent a relevant mechanism for the dissipation of the vortex energy in a stratified ambient ocean only episodically. Finally, a critical discussion about the appropriateness of the different approximations assumed in the investigation is presented. In particular, the appropriateness of the reduced-gravity assumption is discussed. Results are consistent with those obtained analytically in the frame of the frontal-geostrophic theory: Although the effect of an active ambient layer on the vortex dynamics is found to be virtually absent only for unrealistically large water depths, it appears that the reduced-gravity model describes warm-core eddies acceptably for values of the ratio between maximum vortex thickness and total water depth typical for Gulf Stream rings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    EGU General Assembly 2016
    In:  EPIC3EGU General Assembly 2016, Vienna, Austria, 2016Geophysical Research Abstracts, EGU General Assembly 2016
    Publication Date: 2016-08-08
    Description: Using a very high resolution 3D numerical model we investigate the tidal dynamics in the Strait of Messina. We show that different stratifications at the southern boundaries, consistent with observed stratifications in the Ionian approaches to the Strait, yield different mean sea level heights. On this basis we search for long-term variations in sea level heights measured in the tidal stations of Catania, Messina and Marseille, and associate them with the concomitant phase of dominant modes of interannual-to-decadal climate variability in the Euro-Mediterranean sector. We focus on the atmospheric North Atlantic Oscillation (NAO) and on the Adriatic-Ionian Bimodal Oscillating System (BiOS) to illustrate the grand variability in sea level teleconnections during the last four decades. In particular, observations reveal a strong imprint of both NAO and BiOS on all sea level records in the 21st century, when NAO and BiOS are inversely correlated. In the 1990s, a well known period of persistent positive NAO anomalies, the NAO imprint on sea level becomes weaker compared to the most recent period, although it remains clear on decadal trends, while the BiOS shows very weak positive variability. In the 1970s and early 1980s, when the NAO was on a neutral phase with weak variability, the NAO imprint on sea levels is weakest, and sea levels in Marseille and Sicily anticorrelate with each other, in contrast to the positive correlations found during the later periods. Based on these observational evidence, we discuss how our modeling results provide a basis to understand the local dynamics that contributed to determine such observed decadal variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...