ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (19)
  • AMER METEOROLOGICAL SOC  (9)
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 32 . L09602.
    Publication Date: 2018-03-28
    Description: Changes of the meridional overturning circulation (MOC) due to surface heat flux variability related to the North Atlantic Oscillation (NAO) are analyzed in various ocean models, i.e., eddying and non‐eddying cases. A prime signature of the forcing is variability of the winter‐time convection in the Labrador Sea. The associated changes in the strength of the MOC near the subpolar front (45°N) are closely related to the NAO‐index, leading MOC anomalies by about 2–3 years in both the eddying and non‐eddying simulation. Further south the speed of the meridional signal propagation depends on model resolution. With lower resolution (non‐eddying case, 4/3° resolution) the MOC signal propagates equatorward with a mean speed of about 0.6 cm/s, similar as spreading rates of passive tracer anomalies. Eddy‐permitting experiments (1/3°) show a significantly faster propagation, with speeds corresponding to boundary waves, thus leading to an almost in‐phase variation of the MOC transport over the subtropical to subpolar North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 31 . L15308.
    Publication Date: 2018-03-21
    Description: The Galápagos Islands provide a topographic barrier for the Southern Equatorial Current (SEC) and the Equatorial Undercurrent (EUC). An island wake effect can be diagnosed from the difference of an ocean general circulation model simulation which includes the Galápagos Islands and one which ignores their presence. Cold thermocline water upwells on the western side of the islands, and only during boreal winter season these cold waters can linger around the Islands at a depth of about 80 m and affect the far eastern equatorial Pacific surface waters. This effect is partly offset by the westward transport of cold surface waters by the SEC which creates a wake on the western side of the Islands. It is furthermore shown that changes in horizontal current shear, induced by the presence of the Galápagos Islands modify the generation of tropical instability waves and lead to a basin scale SST anomaly pattern.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 115 (C8). C08026.
    Publication Date: 2018-01-18
    Description: Using a global ocean model with regionally focused high resolution (1/10°) in the East China Sea (ECS), we studied the oceanic heat budget in the ECS. The modeled sea surface height variability and eddy kinetic energy are consistent with those derived from satellite altimetry. Significant levels of eddy kinetic energy are found east of the Ryukyu Islands and east of Taiwan, where the short-term variability is spawned by active mesoscale eddies coalescing with the circulation. Furthermore, the simulated vertical cross-stream structure of the Kuroshio (along the Pollution Nagasaki line) and the volume transport through each channel in the ECS are in good agreement with the observational estimates. The time-averaged temperature fluxes across the Taiwan Strait (TWS), Tsushima Strait (TSS), and the 200 m isobath between Taiwan and Japan are 0.20 PW, 0.21 PW, and 0.05 PW, respectively. The residual heat flux of 0.04 PW into the ECS is balanced by the surface heat loss. The eddy temperature flux across the 200 m isobath is 0.005 PW, which accounts for 11.2% of the total temperature flux. The Kuroshio onshore temperature flux has two major sources: the Kuroshio intrusion northeast of Taiwan and southwest of Kyushu. The Ekman temperature flux induced by the wind stress in the ECS shows the same seasonal cycle and amplitude as the onshore temperature flux, with a maximum in autumn and a minimum in summer. We conclude that the Ekman temperature flux dominates the seasonal cycle of Kuroshio onshore flux.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 112 (C6). C06004.
    Publication Date: 2018-04-19
    Description: Eddy length scales are calculated from satellite altimeter products and in an eddy-resolving model of the North Atlantic Ocean. Four different measures for eddy length scales are derived from kinetic energy densities in wave number space and spatial decorrelation scales. Observational estimates and model simulation agree well in all these measures near the surface. As found in previous studies, all length scales are, in general, decreasing with latitude. They are isotropic and proportional to the local first baroclinic Rossby radius (L r) north of about 30°N, while south of 30°N (or for L r 〉 30 km), zonal length scales tend to be larger than meridional ones, and (scalar) length scales show no clear relation to L r anymore. Instead, they appear to be related to the local Rhines scale. In agreement with a recent theoretical prediction by Theiss [2004], the observed and simulated pattern of eddy length scales appears to be indicative of two different dynamical regimes in the North Atlantic: anisotropic turbulence in the subtropics and isotropic turbulence in the subpolar North Atlantic. Both regions can be roughly characterized by the ration between L r and the Rhines scales (L R), with L R 〉 L r in the isotropic region and L R 〈 L r in the anisotropic region. The critical latitude that separates both regions, i.e., where L R = L r, is about 30°N.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-19
    Description: A coupled ecosystem-circulation model of the North Atlantic is used to examine the individual contributions by wind stress and surface heat fluxes to naturally driven interannual-to-decadal variability of air-sea fluxes of CO2 and O2 during 1948–2002. The model results indicate that variations in O2 fluxes are mainly driven by variations in surface heat fluxes in the extratropics (15°N to 70°N), and by wind stress in the tropics (10°S to 15°N). Conversely, variations in simulated CO2 fluxes are predominantly wind-stress driven over the entire model domain (18°S to 70°N); while variability in piston velocity and surface heat fluxes is less important. The simulated uptake of O2 by the North Atlantic amounts to 70 ± 11 Tmol yr−1 to which the subpolar region (45°N to 70°N) contributes by 62 ± 10 Tmol yr−1. Whereas the subpolar North Atlantic takes up more than 2/3 of the total carbon absorbed by the North Atlantic in our model (about 0.3 Pg C yr−1), interannual variability of air-sea CO2 fluxes reaches similar values (about 0.01 Pg C yr−1 each) in the subpolar (45°N to 70°N), the subtropical (15°N to 45°N) and the equatorial (10°S to 15°N) Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 114 (C6).
    Publication Date: 2018-01-15
    Description: On the basis of integrations of an eddy-permitting coupled physical-biological model of the tropical Pacific we explore changes in the simulated mean circulation as well as its intraseasonal to interannual variability driven by the biologically modulated vertical absorption profiles of solar radiation. Three sensitivity ocean hind-cast experiments, covering the period from 1948 to 2003, are performed. In the first one, simulated chlorophyll affects the attenuation of light in the water column, while in the second experiment, the chlorophyll concentration is kept constant in time by prescribing an empirically derived spatial pattern. The third experiment uses a spatially and temporally constant value for the attenuation depth. The biotically induced differential heating is generated by increased absorption of light in the surface layers, leading to a surface warming and subsurface cooling. The effect is largest in the eastern equatorial Pacific. However, the initial vertical redistribution of heat leads to considerable changes of the near-surface ocean circulation subsequently influencing the near-surface temperature structure. In general, including biophysical coupling improves the model performance in terms of temperature and ocean circulation patterns. In particular, the upwelling in the eastern equatorial Pacific is enhanced, the mixed layer becomes shallower, the warm bias in the eastern Pacific is reduced, and the zonal temperature gradient increases. This leads to stronger La Niña events and an associated increase in the variability of the Niño3 SSTA time series. Furthermore, the eddy kinetic energy (EKE) associated with mesoscale eddies in the eastern equatorial Pacific increases by almost 100% because of enhanced EKE production due to enhanced horizontal and vertical shear of the mean currents.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 33 (L11606).
    Publication Date: 2018-02-19
    Description: Thickness diffusivity (κ) according to the Gent and McWilliams parameterisation which accounts for eddy-driven advection in the ocean, is estimated using output from an eddy-resolving model of the Southern Ocean. A physically meaningful definition of rotational eddy fluxes leads almost everywhere to positive κ. Zonally averaged near surface values of κ remain smaller than 200 m2/s poleward of the polar front, increases between 60–45°S to about 600 m2/s and peak between 45–35° S at almost 3000 m2/s. κ stays high in the upper 500 m but decreases with depth and is essentially zero below 2500 m. In addition to the thickness diffusion (κ) there is eddy-induced eastward (westward) advection of isopycnal thickness at the poleward (equatorward) flank of the ACC pointing toward strong anisotropic lateral mixing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 113 . C04003.
    Publication Date: 2019-09-23
    Description: Middepth current measurements in the equatorial Atlantic are characterized by elevated levels of energy contained in zonal flows of high baroclinic mode number. These alternating zonal flows, often called equatorial stacked jets, have amplitudes up to 20 cm s−1 and vertical wavelengths of 600 m. The jets are most pronounced in the depth range between 500 and 2500 m. Repeated direct velocity observations at 35°W indicate that the jets are coherent within ±1° of the equator. Individual jets can persist for 1–2 years, but they appear and decay rather irregularly. The equatorial stacked jets are also found in realistic general circulation model simulations. The features grow in amplitude with increasing horizontal and vertical model resolution. However, even at very high model resolutions, their amplitudes are still underestimated. In all model simulations, high levels of energy related to the stacked jets are found in the vicinity of the western boundary currents (WBCs). Depth range and strength of the WBCs in different experiments are related to depth range and strength of the jets. In the interior, stacked jets are characterized by eastward wave propagation suggesting that high baroclinic mode Kelvin waves radiate energy generated in the WBC into the interior and form the stacked jets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 34 (L07604).
    Publication Date: 2018-02-14
    Description: The traditional point of view is that in the ocean, the meridional transport of heat is achieved by the wind-driven and meridional overturning circulations. Here we point out the fundamental role played by ocean mixing processes. We argue that mixing (i.e., water mass conversion) associated with eddies, especially in the surface mixed layer, can play an important role in closing the ocean heat budget. Our results argue that the lateral mixing applied at the surface of ocean/climate models should be playing an important role in the heat balance of these models, indicating the need for physically-based parameterizations to represent this mixing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 20 (GB2008).
    Publication Date: 2018-03-22
    Description: Physical transport processes of carbon, alkalinity, heat, and nutrients to a large extent control the partial pressure of CO2 at the sea surface and hence the oceanic carbon uptake. Using a state-of-the-art biogeochemical model of the North Atlantic at eddy-permitting resolution we show that biases in the simulated circulation generate errors in air-sea fluxes of CO2 which are still larger than those associated with the considerable uncertainties in parameterizations of the air-sea gas exchange. A semiprognostic correction method that adiabatically corrects the momentum equations while conserving water mass properties and tracers is shown to yield a more realistic description of the carbon fluxes into the North Atlantic at little additional computational cost. Owing to upper ocean flow patterns in better agreement with observations, simulated CO2 uptake in the corrected regional model is larger by 25% compared to the uncorrected model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...