ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (8)
Collection
Years
Year
  • 1
    Publication Date: 1981-03-01
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1981-07-01
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1984-03-01
    Print ISSN: 0140-7791
    Electronic ISSN: 1365-3040
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 7 (1984), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Transpiration of Salsola kali L. plants, grown in small pots under controlled environmental conditions, was followed through a drying cycle of the soil. Three different nutrient solutions were used during the preconditioning growth period: control (C), half-strength Hoagland's nutrient solution; C plus 150mol m−3 NaCl; and C plus 150mol m−3 KCl. Soil water content at saturation at the beginning of the drying cycle was 20% (w/w). Both NaCl and KCl treatments modified the plants' response to changes in soil water status. The control plants transpired twice as much (per unit leaf dry weight) as the salt-treated plants, even when the soil was at maximal water capacity. Transpiration of the control plants remained high, until the soil water content declined to 5%. After that stage the stomata of these plants closed abruptly. Transpiration of the salt-treated plants started decreasing when the soil water content was approximately 16%, and did so gradually until all the available water was depleted. When transpiration was plotted against soil water potential a sharp decline in the transpiration of control plants was observed with the soil water potential decreasing from -0.04 to -1.2MPa. Transpiration of the salt-treated plants decreased gradually over a wide range of soil water potential (−0.8 to −7.0MPa).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 61 (1984), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In Israel Najas marina L. grows mainly in fresh water habitats. The halophytic nature of a population from one such habitat was investigated. NaCl had a positive effect on the growth of Najas, with an optimal concentration of 37–55 μM. Germination percentage was only slightly reduced by NaCl up to a concentration of 74 μM. It is thus concluded that the populations of Najas in Israel retain their halophytic nature. In fresh water habitats, Najas grows under suboptimal NaCl concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 53 (1981), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The relationships between root surface phosphatase activity and the edaphic factors of their native habitats were investigated in four ecotypes of Aegilops peregrina (Hack.) Maire et Weil. In one set of experiments plants were grown in phosphate-deficient nutrient solution cultures (5 μM) with three pH values: 5.5, 6.5 and 7.5. In a second series, plants were grown in both P-poor and P-rich soils.Results showed an optimal activity of the commonly-described root surface acid phosphatase of pH 4.5–5.0 in the ecotypes Meron (a P-poor montmorillonitic, typical mediterranean Terra-Rossa soil) and Har-Hurshan (a P-rich calcareous soil). However, in the ecotypes Malkiya (a P-rich kaolinitic Terra-Rossa) and Bet-Guvrin (a P-rich calcareous soil) the optimal activity of the phosphatase occurred at pH 6.0. The pH level of the growth solution had no effect on the pH of optimal activity of the phosphatase in the ecotypes Malkiya and Bet-Guvrin, but it somewhat affected their level of activity.Phosphatase activity was stimulated when plant roots were grown in a P-poor soil, as compared to the activity of those which were grown in a P-rich soil. Plants of the Malkiya ecotype exhibited the strongest activation of phosphatase as compared to the other three ecotypes. It seems that ecotypes which have evolved in P-rich soils may regulate their root surface phosphatase activity better than those which have evolved in P-poor soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 49 (1981), S. 419-424 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The role of soil Phosphorus (P) availability on the ecotypic differentiation of plants was investigated. Populations of Aegilops peregrina (Hack.) were collected from four habitats which differed in their soil P. The four soils were: Meron (a P-deficient montmorillonitic xerochrept on dolomite), Malkiya (a P-fertile kaolinitic xerochrept on hard limestone), Har-Hurshan and Bet-Guvrin (lithic xerorthents on soft limestone with appreciable amounts of P, mainly as carbonate-apatite). Plants of the four populations were grown in pots with Meron soil which were previously equilibrated with four different amounts of soluble phosphate to give 1.2, 3.1, 10.7 and 18.9 μgP g-1 soil of sodium-bicarbonate extractable P. Plants originated from Malkiya population produced higher dry matter yields than the other three populations. Dry matter yields of the various populations were analyzed by means of a Mitcherlich's response function, versus sodium-bicarbonate extractable (‘available’) soil P. The analysis revealed that Malkiya population plants had a significant advantage over Meron population plants in the response parameter c: this express the response rate of the plants to phosphate by means of dry matter production. With regard to the parameter Po, which represents the ability of plants to utilize barely-available fractions of soil P, the opposite was true. Har-Hurshan and Bet-Guvrin populations were intermediate in these two parameters. A version of the Mitcherlich response function is proposed, which expresses plant yield as a function of both soil ‘available’ P and plant age. Meron plants contained the highest percentage of P in plant material, but compared to the other populations, they were the most inefficient in producing dry matter from the already absorbed P. Plants from the calcareous soils, Har-Hurshan and Bet-Guvrin, did not show any apparent trend. In soils which contain moderate amounts of lime, P may become a major limiting growth factor. Plant populations became adapted to low availability of P by (1) improving their ability to utilize barely-available soil P fractions and (2), by decreasing their productivity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Fifty-four species of the Chenopodiaceae in Israel were examined for their anatomical features, δ13C values, habitat and phytogeographical distribution. 17 species have δ13C values between -20‰ and -30‰and non-Kranz anatomy (NK) and are therefore considered as C3 plants. 37 species have δ13C values between -10‰ and -18‰ and Kranz or C4-Suaeda type anatomy and are therefore considered as C4 plants. Some C4 plants have leaf structure which seems to be intermediate between the Kranz and the C4-Suaeda type of leaf anatomy. The segregation of the species into photosynthetic groups shows tribal and phytogeographical grouping. Most of the C3 Chenopods are either mesoruderal plants or coastal halophytes, with a distribution area which covers the Euro-Siberian as well as the Mediterranean phytogeographical regions. The C4 Chenopods are mainly desert or steppe xerohalophytes with a distribution area which includes the Saharo-Arabian and/or Irano-Turanian phytogeographical regions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...