ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (13)
  • 1965-1969  (13)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 52 (1965), S. 182-183 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 56 (1969), S. 414-415 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 321 (1986), S. 510-511 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] During a recent high-pressure investigation of the system MgO-Al2O3-SiO2-H2O (MASH) aimed at synthesizing a Ti-free ellenbergerite3, reflections were encountered in the powder X-ray diffraction pattern that did not fit any of the known crystalline phases of the MASH system, nor could they be ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 14 (1967), S. 343-358 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Zusammenfassung Ein synthetisches Endglied der Osumilitgruppe mit der Formel KMg2Al3[Si10Al2-O30]·xH2O wurde durch kurzzeitige Hydrothermalversuche bei 650–700° C, 1 kb $$P_{{\text{H}}_{\text{2}} {\text{O}}}$$ aus einem Glas der entsprechenden Zusammensetzung mit voller Ausbeute dargestellt. Seine optischen und röntgenographischen Eigenschaften sind denen natürlicher Osumilite nahe verwandt. Bei niedrigeren und höheren Temperaturen und Wasserdrucken entstanden zusätzlich noch andere Phasen, und zwar um so mehr, je länger die Versuchszeiten gewählt wurden. In sehr langen Versuchen von 3 Monaten und darüber wird der synthetische Osumilit wieder abgebaut, selbst unter den PT-Bedingungen seiner Bildung. Dies bedeutet, daß die Phase unter solchen Bedingungen ein metastabiles Kristallisationsprodukt ist. Die stabilen Abbauprodukte sind, in der Reihenfolge zunehmender Temperatur: Muscovit+amesitischer Chlorit+Quarz; eastonitischer Phlogopit+Cordierit+ Muscovit+ Quarz und Cordierit+Kalifeldspat+Quarz. Ein natürlicher Osumilit von Sakkabira, Japan, wurde unter ähnlichen Bedingungen ebenfalls abgebaut. Diese Versuchsergebnisse sprechen dafür, daß das seltene Mineral Osumilit vielleicht eine metastabile Phase ist, die sich bevorzugt in Bereichen der Sanidinitfacies bildet wegen der dort im allgemeinen raschen, nicht zum Gleichgewicht führenden Kristallisation. Natürliche, myrmekitartige Verwachsungen von Cordierit, Kalifeldspat und Quarz aus metamorphen Gesteinen können möglicherweise durch den Abbau von früher in diesen Gesteinen vorhandenen Osumilitphasen gedeutet werden.
    Notes: Abstract A synthetic end member of the osumilite group with a composition KMg2Al3[Si10Al2-O30]·xH2O was obtained as a single phase through short-time hydrothermal treatment of a glass of the appropriate composition at 1 kb $$P_{{\text{H}}_{\text{2}} {\text{O}}}$$ and 650–700° C. Its optical and x-ray properties are close to those of natural osumilites. At temperatures outside the range 650 to 700°C, and at higher pressures osumilite could not be synthesized as a single phase, even in short runs. With experiment durations of 3 months and more the synthesized osumilite breaks down under the PT conditions of its formation, indicating that it is metastable under these conditions. The stable breakdown products, in the order of increasing temperatures, are: muscovite+amesitic chlorite+quartz; eastonitic phlogopite+cordierite+muscovite+quartz; and cordierite+K-feldspar+quartz. Natural osumilite of Sakkabira, Japan, treated under similar conditions also broke down. These results suggest that the rare mineral osumilite may represent a metastable phase due to rapid and non-equilibrium crystallization common in sanidinite-facies environments. Natural myrmekite-like intergrowths of cordierite with quartz and K-feldspar occurring in metamorphic rocks may be the result of the breakdown of pre-existing osumilite phases in these rocks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 12 (1966), S. 223-244 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Concordant “igneous-looking” bands of ferruginous bulk composition occur in a highly aluminous Precambrian metasedimentary series composed predominantly of kyanite quartzite. The bands consist of quartz, staurolite, and magnetite (partially martitized) with accessory amounts of muscovite, chlorite (pseudomorphous after biotite), chloritoid, apatite, and monazite. Quartz is found in three types (I–III) differing in appearance as well as in origin. Staurolite, in combination with quartz-II, shows peculiar radial sieve textures caused by mimetic crystallization after preexisting chloritoid rosettes. The chloritoid has been largely consumed, either by a reaction with hypothetical former kyanite to produce staurolite+ quartz with rock composition unchanged, or, possibly, by metasomatic introduction of oxygen (oxidation) to yield staurolite+quartz+magnetite; the remaining chloritoid, however, persisted in stable equilibrium with the other minerals of the rock. The staurolite quartzites are thus considered to represent original sedimentary bands which have undergone several stages of recrystallisation and (possibly) metasomatic modification during their metamorphic history. Their “igneous aspect” results from annealing crystallisation during a late static, i.e. postdeformational, thermal event of regional metamorphism. Chemical analysis of the staurolite shows no unusual features. For all staurolites plotted there is a positive relationship of the excess H+ over 2.0 and the Si+4-deficiency in the unit cell. This suggests partial substitution of 4 H+ for Si+4. The formation of staurolite in regional metamorphic rocks with excess silica, low alkali contents, and (FeO+MgO)/Al2O3 ratios 〈 1 showing chloritoid at lower grades appears to be governed, in many cases, by the reaction chloritoid+Al-silicate=staurolite+quartz+H2O. The assemblage chloritoid-staurolite may be stable in regional metamorphism over a limited pressure-temperature range.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 22 (1969), S. 190-207 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The phase K2Mg5Si12O30 was synthesized both hydrothermally and dry under a variety of pressures and temperatures, and its stability relations were determined. Under hydrothermal conditions it exhibits a lower stability limit lying at 595°C, 1 kb, and 650°C, 2 kb, due to its breakdown into the hydrous assemblage quartz+KMg2.5Si4O10(OH)2 (a mica phase). Its upper temperature stability under hydrothermal conditions is given by its incongruent melting to MgSiO3+liquid. Near 820° C at a fluid pressure of approximately 6.5 kb the two univariant curves for these breakdown reactions intersect thus limiting the stability field to lower fluid pressures. — Under anhydrous conditions K2Mg5Si12O30 becomes unstable at pressures between approximately 7 and 32.5 kb due to its incongruent melting to the assemblage MgSiO3+quartz (or coesite)+liquid; this melting curve has a pronounced negative slope. No subsolidus breakdown assemblage was encountered at 32.5 kb down to temperatures as low as 750°C. This behavior is probably due to the instability of other ternary compounds in the system K2O-MgO-SiO2 at high pressures and thus to the existence of very low-temperature eutectics involving only binary and unary solid phases plus liquid. It is likely that these stability relations provide a model for those of the natural minerals merrihueite and roedderite which contain Na and Fe+2 partly substituting for K and Mg and which were encountered in several meteorites. Therefore, the cosmic events leading to the formation of these minerals must have taken place at relatively low pressures and high temperatures, especially when water was present. The bulk compositions of these minerals appear to be incompatible with average chondritic matter under equilibrium conditions. Hence merrihueite and roedderite are not likely to be found in equilibrated chondrites which contain feldspars instead.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 90 (1985), S. 93-100 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract NaBe-cordierites (Fe/(Fe+Mn+Mg)=0.49–0.57) with BeO contents up to 1.16 weight % and additional Li2O contents up to 0.21 wt.% occur in cordierite-apatite-uraninite-muscovite-biotite-chlorite-feldspar-quartz nodules within pegmatites penetrating gneissic roof pendants of a lower Palaeozoic granite batholith. Occasional small crystals of beryl are interpreted to coexist stably with unaltered cordierite. Be and Li are incorporated in cordieriteaccording to the substitutions Na[Channel] + Be[4]→ Al[4] and Na[Ch]+Li[6]→R2+[6], respectively. The coexisting phyllosilicates do apparently not contain appreciable amounts of Li. According to powder IR-data, the analyzed water contents of the cordierites are dominantly of type II, and there is also little CO2. Their distortion indices Δ are rather low (0.121–0.145) and so are their optic angles (2Vα=50-51°). Considering all eleven NaBeLi-cordierites known thus far there is a strong positive correlation between Na and (Be+Li) with a slope close to 1.0. However, there is virtually no correlation between Be and Li, their incorporation into cordierite depending on the local geochemical environment. A strong negative correlation exists between the distortion indices Δ of the NaBeLi-cordierites and their Be contents. Li has a disturbing influence on this relationship, and the Δ versus Na correlation is also statistically worse than Δ versus Be.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 92 (1986), S. 113-127 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The MgAl surinamite end member, (Mg3Al3)[6]O[AlBeSi3O15], was synthesized in the requisite system with and without water. The new phase is monoclinic, space group P2/n, with a=9.881(1)Å; b=11.311(1) Å; c=9.593(1) Å; β=109.52(2)°. Refractive indices are n x=1.7015(20); n y=1.7035(20); n z=1.7055(20). The infrared spectrum shows characteristic differences against the structurally related and optically extremely similar phase sapphirine. Using the seeding technique, the preliminary stability field for MgAl surinamite was found to lie at high temperatures (≳650 °C) and high pressures (≳4 kbar). At lower temperatures breakdown takes place to hydrous assemblages of chlorite, talc, and chrysoberyl with kyanite or yoderite; at lower pressures chrysoberyl forms parageneses with sapphirine and cordierite. In crystal chemical terms the underlying principle for the stability of surinamite versus that of the low-pressure assemblages is the higher proportion of octahedrally coordinated Al in surinamite (75%). Following the same principle surinamite itself decomposes at still higher pressures to a paragenesis, in which all Al enters octahedral coordination (pyrope+a chrysoberyl-type phase and some unidentified X-ray peaks). The stability field of synthetic MgAl surinamite is in good agreement with P, T-estimates of some 8–12 kbar, 800°–950° C as taken from the literature for the few occurrences of natural, Fe-bearing surinamite in granulite and upper amphibolite facies environments. The incorporation of iron in surinamite must be limited, because this mineral is known to coexist with its more iron-rich breakdown assemblage almandine-rich garnet+chrysoberyl. As the minimum melting curve of granite under hydrous conditions lies outside the surinamite field up to a water pressure of about 20 kbar, the absence of surinamite in normal granitic pegmatites can already be explained by physical constraints. However, there are probably also chemical constraints in the generally high Fe/Mg bulk chemistry of the pegmatite environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 94 (1986), S. 333-342 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Low-temperature veinlets crosscutting low-grade manganiferous ironstones of Ordovician age contain four texturally distinct types of chlorites with nearly constant Al/Si-ratios that form two separate populations regarding their Mn/Mg/Fe-ratios: One with low iron contents (〈1.5 w.% FeO) and molar Mg/Mn-ratios just below unity (magnesian pennantites), the other with higher iron (7–11 w.% FeO) and Mg/Mn≳4 (manganoan clinochlores). The two populations, which can be distinguished readily by their characteristic optical elongation and dispersion colors, are intimately intergrown and have formed partly during consecutive stages of a chlorite crystallization sequence, partly by simultaneous growth and possibly even as exsolution products of a pre-existing homogeneous chlorite phase of intermediate composition. These findings indicate a miscibility gap in the chlorite solid solutions beginning along the binary Mg-Mn series and extending into the ternary system. There may be a solvus relationship with the miscibility gap closing at higher temperatures (400° C?). One very intensely colored chlorite type of the pennantite population may contain Fe3+ or Mn3+ or both. Additional minerals in the veinlets are spessartine, kutnahorite, quartz, and an allanite-piemontite phase. Crystallization began near the centers of the present veins with Mn-rich minerals and continued towards their edges and into the extremely thin ends of the developing fractures with the deposition of the more Fe-rich chlorites that are in equilibrium with the ironstone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...