ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: Agrobacterium ; gene regulation ; sensor protein ; signal transduction ; VirA protein ; acetosyringone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The VirA protein ofAgrobacterium tumefaciens is thought to be a receptor for plant phenolic compounds such as acetosyringone. Although it is not known whether the interaction between VirA and the phenolics is direct or requires other phenolic-binding proteins, it is shown in this study that the first 280 amino acids of the VirA protein are not essential for the acetosyringone mediatedvir gene induction response. Considering the fact that the cytoplasmic region between the amino acids 283 and 304 is highly conserved between the different VirA proteins, and that deletion of this region abolishes VirA activity, we suggest that the acetosyringone receptor domain is located in this cytoplasmic domain of the VirA protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: ATP ; GTP ; protein kinase ; receptor ; rice ; signal transduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A receptor-like protein kinase, OsPK10, has been cloned from rice (Oryza sativa). The 2.8 kb cDNA contains an open reading frame capable of encoding a peptide sequence of 824 amino acids. The topological features of the predicted OsPK10 protein include an N-terminal signal peptide, a cysteine-rich extracellular ligand-binding domain, a membrane-spanning segment, and a cytoplasmic domain possessing all the hallmarks of catalytic domains of eukaryotic protein kinases. The cytoplasmic domain was selectively expressed in Escherichia coli and assayed for kinase activity. The results show the protein is capable of autophosphorylation using either ATP or GTP as the phosphate donor. Phosphoamino acid analysis reveals phosphorylation of threonines, consistent with the substrate specificity indicated by sequence motifs in the catalytic core. A single amino acid substitution of Glu for Lys-528 completely abolishes autophosphorylation activity. DNA gel blot analyses suggest that the haploid rice genome contains a single copy of the OsPK10 gene. OsPK10 transcripts appear to be more abundant in shoots than in roots of rice seedlings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 18 (1992), S. 581-584 
    ISSN: 1573-5028
    Keywords: gene family ; polymerase chain reaction ; protein kinases ; signal transduction ; soybean (Glycine max L.)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In this study we report identification of six members of a protein kinase gene family from soybean (Glycine max L.). Two fully degenerate oligonucleotide primers corresponding to two conserved motifs (DLK-PENV and GTHEYLAPE) in the catalytic domains of eukaryotic protein serine/threonine kinases were used in a polymerase chain reaction (PCR) to amplify soybean cDNA. Sequence analysis showed that 28 of the PCR sequences represented six different putative protein serine/threonine kinases. These results not only demonstrate that catalytic domains of protein kinases are highly conserved between plants and other eukaryotes but also suggest that there are multiple genes encoding protein kinases in plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...