ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (8)
  • 1
    Publication Date: 1999-12-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-05-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-05-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-23
    Description: An analysis of nadir reflectivity Fourier spatial power spectra and autocorrelation functions at solar wavelengths and for cloudy conditions has been carried out. The data come from Landsat Thematic Mapper (TM) observations, while Monte Carlo (MC) simulations are used to aid the interpretation of the Landsat results. We show that radiative processes produce consistent signatures on power spectra and autocorrelation functions. The former take a variety of forms not shown or explained in previous observational studies. We demonstrate that the TM spectra can potentially be affected by both radiative "roughening" at intermediate scales (approx. 1 -5 km), being more prevalent at large solar zenith angles, and the already documented radiative "smoothing" at small scales (less than 1 km). These processes are wavelength dependent, as shown by systematic differences between conservative (for cloud droplets) TM band 4 (approx. 0.8 microns) and absorbing band 7 (approx. 2.2 microns): band 7 exhibits more roughening and less smoothing. This is confirmed quantitatively by comparing least-squared fitted power spectral slopes for the two bands. It is also corroborated by a slower decrease with distance of autocorrelation function values for band 4 compared to band 7. The appearance of roughening at large solar zenith angles is a result of side illumination and shadowing and adds an additional complexity to the power spectra. MC spectra are useful in illustrating that scale invariant optical depth fields can produce complex power spectra that take a variety of shapes under different conditions. We show that radiative roughening increases with the decrease of single scattering albedo and with the increase of solar zenith angle (as in the observations). For high Sun there is also a clear shift of the radiative smoothing scale to smaller values as droplet absorption increases. The shape of the power spectrum is sensitive to the magnitude and type of cloud top height variability, with the spectral signatures of decorrelation between reflectance and optical depth at large scales becoming stronger as the magnitude of cloud top variations increase. Finally, the usefulness of power spectral analysis in evaluating the skill of novel optical depth retrieval techniques in removing 3D radiative effects is demonstrated. New techniques using inverse Non-local Independent Pixel Approximation (NIPA) and Normalized Difference of Nadir Reflectivity (NDNR) yield optical depth fields which better match the scale-by-scale variability of the true optical depth field.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: In order to correctly interpret shortwave cloud radiation measured by satellites and ground-based radiometers, or by two aircraft flying above and below clouds, we need to better understand interactions between inhomogeneous clouds and solar radiation. The discrepancies between shortwave absorption inferred from measurements and predicted by models, between cloud optical depths estimated from satellites and ground measurements, between single scattering albedo retrieved from in situ radiation measurements and computed from measured droplet size distribution, among others, are strongly affected by cloud horizontal inhomogeneity. Net horizontal photon transport (i. e., horizontal fluxes) are a direct consequence of the inhomoqeneity in cloud structure. Horizontal fluxes and their effect on the accuracy of the pixel-by-pixel one-dimensional (1 D) radiative transfer calculations has recently undergone close scrutiny for conservative scattering. However, the properties and magnitude of horizontal fluxes in absorbing wavelengths are still poorly understood. As far as we are aware, only Ackerman and Cox and Titov discussed correlations between horizontal fluxes at absorbing wavelengths, though these were far from comprehensive. This paper partly fills this gap. We discuss here of whether the accuracy of the Independent Pixel Approximation (IPA), a 1 D radiative transfer approximation for each pixel, is a better model for multiple scattering at conservative or at absorbing wavelengths. Issues addressed here are: (1) dependence of net horizontal fluxes on single scattering albedo; (2) connection between pixel-by-pixel accuracy of the IPA and horizontal fluxes and (3) radiative smoothing and horizontal fluxes at absorbing wavelengths. In contrast to the traditional understanding of IPA, we study IPA accuracies not only for reflectance but also for transmittance and absorptance at both conservative and absorbing wavelengths. In spite of the apparent similarity between the three processes, dependence of IPA accuracies on single-scattering albedo is completely different. As a result, cloud optical properties retrieved from high resolution satellite images and ground-based measurements using IPA at absorbing channels will have different accuracies.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Radiation; Jun 28, 1999 - Jul 02, 1999; Madison, WI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-10
    Description: The key issue in retrieving aerosol optical thickness over land from shortwave satellite radiances is to identify and separate the signal due to scattering by a largely transparent aerosol layer from the noise due to reflection by the background surface, where the signal is relatively uniform compared to the highly inhomogeneous surface contribution. Sensitivity studies in aerosol optical thickness retrievals reveal that the apparent reflectance at the top of the atmosphere is very susceptible to the surface reflectance, especially when aerosol optical thickness is small. Uncertainties associated with surface reflectance estimation can greatly amplify the error of the aerosol optical thickness retrieval. To reduce these uncertainties, we have developed a "path radiance" method to retrieve aerosol optical thickness over land by extending the traditional technique that uses the "dark object" approach to extract the aerosol signal. This method uses the signature of the correlation of visible and mid-IR reflectance at the surface, and couples the correlation with the atmospheric effect. We have applied this method to a TM (Landsat Thematic Mapper) image acquired over the Oklahoma Southern Great Plains (SGP) site of DoE's ARM (Atmospheric Radiation Measurement) program on September 27, 1997, a very clear day during the first Landsat IOP (Intensive Observation Period). The retrieved mean aerosol optical thickness for TM band 1 at 0.49 micrometers and band 3 at 0.66 micrometers agree very well with the ground-based sun-photometer measurements at the ARM site. The ability to retrieve small aerosol optical thickness (such as 0.07 at 0.5 micrometers as in the example considered here) makes this path radiance technique promising. More importantly, the path radiance is relatively insensitive to surface inhomogeneity. The retrieved mean path radiances in reflectance units have very small standard deviations for both TM blue and red bands. This small variability of path radiance further supports the current aerosol retrieval method.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: Scale breaks (spatial scales at which power-law exponent changes occur) observed in Landsat radiances have proven to be useful indicators of radiative interactions, and have aided the development of improved techniques in the remote sensing of clouds. This work extends previous theoretical studies to absorbing wavelengths by using both Landsat Thematic Mapper (TM) observations and Monte Carlo (MC) simulations to infer the systematic dependencies of power spectral shape on cloud characteristics, illumination conditions, and wavelength. We show that MC simulations operating on a simple fractal model of horizontally inhomogeneous clouds produce power spectra that qualitatively resemble observed spectra. We also show that the decrease in the spectra power-law exponent seen at intermediate scales (referred to as "roughening") as the Sun becomes more oblique is more pronounced at absorbing wavelengths. An automated procedure designed to detect the small scale break location is unable to find systematic differences between TM Band 4 and Band 7, despite the fact that MC simulations point to systematic differences in horizontal fluxes. The effect of these qualitative characteristics of the spatial spectra on the retrieval of cloud optical properties is examined by comparing power spectra of nadir radiances with power spectra of optical properties retrieved using either traditional Independent Pixel Approximation approaches or modifications based on normalized radiance indices and the inverse Non-local Independent Pixel Approximation. Assuming that the actual cloud properties follow perfect scaling behavior at all scales, we show the improvement of the proposed retrieval modifications.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: The accurate pixel-by-pixel retrieval of cloud optical properties from space is influenced by radiative smoothing due to high order photon scattering and radiative roughening due to low order scattering events. Both are caused by cloud heterogeneity and the three-dimensional nature of radiative transfer and can be studied with the aid of computer simulations. We use Monte Carlo simulations on variable 1-D and 2-D model cloud fields to seek for dependencies of smoothing and roughening phenomena on single scattering albedo, solar zenith angle, and cloud characteristics. The results are discussed in the context of high resolution satellite (such as Landsat) retrieval applications. The current work extends the investigation on the inverse NIPA (Non-local Independent Pixel Approximation) as a tool for removing smoothing and improving retrievals of cloud optical depth. This is accomplished by: (1) Delineating the limits of NIPA applicability; (2) Exploring NIPA parameter dependences on cloud macrostructural features, such as mean cloud optical depth and geometrical thickness, degree of extinction and cloud top height variability. We also compare parameter values from empirical and theoretical considerations; (3) Examining the differences between applying NIPA on radiation quantities vs direct application on optical properties; (4) Studying the radiation budget importance of the NIPA corrections as a function of scale. Finally, we discuss fundamental adjustments that need to be considered for successful radiance inversion at non-conservative wavelengths and oblique Sun angles. These adjustments are necessary to remove roughening signatures which become more prominent with increasing absorption and solar zenith angle.
    Keywords: Meteorology and Climatology
    Type: May 31, 1999 - Jun 04, 1999; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...