ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Machine learning 29 (1997), S. 65-88 
    ISSN: 0885-6125
    Keywords: Inference ; Learning ; Maps ; Graphs ; Uncertainty ; Noise
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In many applications in mobile robotics, it is important for a robot to explore its environment in order to construct a representation of space useful for guiding movement. We refer to such a representation as a map, and the process of constructing a map from a set of measurements as map learning. In this paper, we develop a framework for describing map-learning problems in which the measurements taken by the robot are subject to known errors. We investigate approaches to learning maps under such conditions based on Valiant's probably approximately correct learning model. We focus on the problem of coping with accumulated error in combining local measurements to make global inferences. In one approach, the effects of accumulated error are eliminated by the use of local sensing methods that never mislead but occasionally fail to produce an answer. In another approach, the effects of accumulated error are reduced to acceptable levels by repeated exploration of the area to be learned. We also suggest some insights into why certain existing techniques for map learning perform as well as they do. The learning problems explored in this paper are quite different from most of the classification and boolean-function learning problems appearing in the literature. The methods described, while specific to map learning, suggest directions to take in tackling other learning problems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-10-01
    Print ISSN: 0020-0255
    Electronic ISSN: 1872-6291
    Topics: Computer Science
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: In recent years, input/output (I/O)-efficient algorithms for a wide variety of problems have appeared in the literature. However, systems specifically designed to assist programmers in implementing such algorithms have remained scarce. TPIE is a system designed to support I/O-efficient paradigms for problems from a variety of domains, including computational geometry, graph algorithms, and scientific computation. The TPIE interface frees programmers from having to deal not only with explicit read and write calls, but also the complex memory management that must be performed for I/O-efficient computation. In this paper we discuss applications of TPIE to problems in scientific computation. We discuss algorithmic issues underlying the design and implementation of the relevant components of TPIE and present performance results of programs written to solve a series of benchmark problems using our current TPIE prototype. Some of the benchmarks we present are based on the NAS parallel benchmarks while others are of our own creation. We demonstrate that the central processing unit (CPU) overhead required to manage I/O is small and that even with just a single disk, the I/O overhead of I/O-efficient computation ranges from negligible to the same order of magnitude as CPU time. We conjecture that if we use a number of disks in parallel this overhead can be all but eliminated.
    Keywords: Computer Programming and Software
    Type: Fifth NASA Goddard Conference on Mass Storage Systems and Technologies; 2; 553-570; NASA-CP-3340-Vol- 2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...