ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (4)
Collection
Years
Year
  • 1
    Publication Date: 2019-07-18
    Description: This paper presents Reynolds-averaged Navier-Stokes calculations for a prototype Martian rotorcraft. The computations are intended for comparison with an ongoing Mars rotor hover test at NASA Ames Research Center. These computational simulations present a new and challenging problem, since rotors that operate on Mars will experience a unique low Reynolds number and high Mach number environment. Computed results for the 3-D rotor differ substantially from 2-D sectional computations in that the 3-D results exhibit a stall delay phenomenon caused by rotational forces along the blade span. Computational results have yet to be compared to experimental data, but computed performance predictions match the experimental design goals fairly well. In addition, the computed results provide a high level of detail in the rotor wake and blade surface aerodynamics. These details provide an important supplement to the expected experimental performance data.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Paper 2002-2815 , 20th AIAA Applied Aerodynamics Conference; Jun 24, 2002 - Jun 26, 2002; Saint Louis, MO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: This paper presents Reynolds-averaged Navier-Stokes calculations for a prototype Martian rotorcraft. The computations are intended for comparison with an ongoing Mars rotor hover test at NASA Ames Research Center. These computational simulations present a new and challenging problem, since rotors that operate on Mars will experience a unique low Reynolds number and high Mach number environment. Computed results for the 3-D rotor differ substantially from 2-D sectional computations in that the 3-D results exhibit a stall delay phenomenon caused by rotational forces along the blade span. Computational results have yet to be compared to experimental data, but computed performance predictions match the experimental design goals fairly well. In addition, the computed results provide a high level of detail in the rotor wake and blade surface aerodynamics. These details provide an important supplement to the expected experimental performance data.
    Keywords: Aerodynamics
    Type: AIAA Paper 2002-2815 , AIAA Applied Aerodynamics Conference; Jun 24, 2002 - Jun 27, 2002; Saint Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Navier-Stokes computational fluid dynamics calculations are presented for isolated, half-span, and full-span V-22 tiltrotor hover configurations. These computational results extend the validity of CFD hover methodology beyond conventional rotorcraft applications to tiltrotor configurations. Computed steady-state, isolated rotor performance agrees well with experimental measurements, showing little sensitivity to grid resolution. However, blade-vortex interaction flowfield details are sensitive to numerical dissipation and are more difficult to model accurately. Time-dependent, dynamic, half- and full-span installed configurations show sensitivities in performance to the tiltrotor fountain flow. As such, the full-span configuration exhibits higher rotor performance and lower airframe download than the half-span configuration. Half-span rotor installation trends match available half-span data, and airframe downloads are reasonably well predicted. Overall, the CFD solutions provide a wealth of flowfield details that can be used to analyze and improve tiltrotor aerodynamic performance.
    Keywords: Aerodynamics
    Type: American Helicopter Society Forum; Jun 11, 2002 - Jun 13, 2002; Montreal, Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: Design tools have been developed for ultra-low Reynolds number rotors, combining enhanced actuator-ring / blade-element theory with airfoil section data based on two-dimensional Navier-Stokes calculations. This performance prediction method is coupled with an optimizer for both design and analysis applications. Performance predictions from these tools have been compared with three-dimensional Navier Stokes analyses and experimental data for a 2.5 cm diameter rotor with chord Reynolds numbers below 10,000. Comparisons among the analyses and experimental data show reasonable agreement both in the global thrust and power required, but the spanwise distributions of these quantities exhibit significant deviations. The study also reveals that three-dimensional and rotational effects significantly change local airfoil section performance. The magnitude of this issue, unique to this operating regime, may limit the applicability of blade-element type methods for detailed rotor design at ultra-low Reynolds numbers, but these methods are still useful for evaluating concept feasibility and rapidly generating initial designs for further analysis and optimization using more advanced tools.
    Keywords: Aerodynamics
    Type: AIAA Paper 2002-0099 , AIAA 40th Aerospace Sciences Meeting; Jan 14, 2003 - Jan 17, 2003; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...