ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (3)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Freshwater biology 47 (2002), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: SUMMARY 1. Breakdown of wood was compared at three sites of the Agüera catchment (Iberian Peninsula): two oligotrophic first-order reaches (one under deciduous forest, the other under Eucalyptus globulus plantations) and one third-order reach under mixed forest, where concentration of dissolved nutrients was higher.2. Branches (diameter = 3 cm, length = 10 cm) of oak (Quercus robur), alder (Alnus glutinosa), pine (Pinus radiata) and eucalyptus, plus prisms (2.5 × 2.5 × 10 cm) of alder heartwood were enclosed in mesh bags (1 cm mesh size) and placed in the streams. Mass loss was determined over 4.5 years, whereas nutrient, lignin and ergosterol were determined over 3 years. In order to describe fungal dynamics, ergosterol was also determined separately on the outer and inner parts of some branches.3. Breakdown rates ranged from 0.0159 to 0.2706 year−1 with the third-order reach having the highest values whatever the species considered. The most rapid breakdown occurred in alder heartwood and the slowest in pine branches; breakdown rates of oak, eucalyptus and alder branches did not differ significantly.4. The highest nitrogen and phosphorus contents were found in alder, followed by oak, while pine and eucalyptus had low values. During breakdown, all materials rapidly lost phosphorus, but nitrogen content remained constant or slightly increased. Lignin content remained similar.5. Peaks of ergosterol ranged from 0.023 to 0.139 mg g−1 and were higher in alder than in other species in two of the three sites. The third-order reach generally had the greatest increase in ergosterol, especially in alder branches, eucalyptus and alder heartwood. The overall species/site pattern of fungal biomass was thus consistent with the observed differences in breakdown.6. When compared with leaves of the same species decomposing at these sites, wood breakdown appeared to be less sensitive to the tree species but more sensitive to stream water chemistry. Although wood breakdown is slower and its inputs are lower than those of leaf litter, its higher resistance to downstream transport results in a relatively high standing stock and a significant contribution to the energy flux.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-06-01
    Print ISSN: 1015-1621
    Electronic ISSN: 1420-9055
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-01-01
    Description: Vast areas of the Iberian Peninsula are covered by monocultures of the exotic treeEucalyptus globulus. Given that (1) leaf litter produced in the riparian areas is the main energy source for small streams, and (2) trees differ in their nutrient content, chemical defenses, and physical attributes, eucalypt plantations have the potential to affect the biology of streams. Research teams from the University of Coimbra and the University of the Basque Country have been addressing the potential effects of eucalypt plantations at several levels of study. Here we review the main conclusions of these investigations.Eucalypt plantations produced less litter than some deciduous forests. However, there were marked differences in timing of litterfall: litter production peaked during autumn in deciduous forests, whereas in the eucalypt forests it tended to peak in summer and to be more evenly distributed throughout the year. Despite these differences, the average standing stock of organic matter was higher in the eucalypt than in the deciduous forest. This may be attributed to (1) the occurrence of spates or heavy rain in autumn, the period of maximum litter fall in deciduous forests, and (2) bark accumulation in eucalypt forests. Because of differences in leaf composition, the nutrient input in eucalypt forests seems to be lower than in deciduous forests. The rate of decomposition of eucalypt leaves was strongly dependent on nutrients in the water: in nutrient-poor waters it was slower than that of most other leaf species, whereas in nutrient-rich waters it can be as fast as alder – a fast-decaying species.The biomass and cumulative diversity of aquatic hyphomycetes colonizing leaves did not differ between eucalypt and other native leaf species, but fungal sporulation generally peaked 2 weeks later on eucalypt leaves. This lag disappeared when lipids (but not polyphenolics) were chemically removed from eucalypt leaves. Similarly, addition of eucalypt oils to culture media retarded or suppressed fungal growth. Streams bordered byEucalyptushad lower diversity of fungal spores (but similar spore densities) in Portugal; less consistent patterns were found in similar experiments in Spain.Eucalyptusleaves proved to be poor food for shredders. Under laboratory conditions leaves ofEucalyptusranked low in food selection experiments using native shredders. The same shredders failed to grow and died when fed exclusively eucalypt leaves. The removal of oils from eucalypt leaves resulted in increased feeding rates, whereas the transfer of oils to alder leaves resulted in decreased feeding rates.The effect of eucalypt plantations on stream invertebrate communities is not very consistent. In nutrient-poor waters, fewer invertebrates colonized eucalypt than alder leaves, but this effect was mitigated after a microbial conditioning period in nutrient-rich waters. Portuguese streams bordered byEucalyptushad lower numbers of invertebrates than streams surrounded by deciduous forests. In Spanish streams differences were less marked and nonexistent when looking at the composition of the communities, which change more from year to year than from site to site. Most of the eucalypt streams studied in Portugal and Spain dried up in summer, a fact that might reflect an increase in soil hydrophobity produced byEucalyptusplantations.The very short planting-to-harvest period of eucalypt plantations results in additional impacts, such as soil loss, siltation of streams, or reduced amounts of woody debris in stream channels, which affects their capacity to retain leaf-litter, as well as the availability of habitat for invertebrates and fish. The studies by the Portuguese and Spanish research teams confirm the importance of maintaining riparian buffer strips to reduce human impact on streams and rivers.
    Print ISSN: 2356-6140
    Electronic ISSN: 1537-744X
    Topics: Natural Sciences in General
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...