ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-03-09
    Description: Efficient folding of many newly synthesized proteins depends on assistance from molecular chaperones, which serve to prevent protein misfolding and aggregation in the crowded environment of the cell. Nascent chain--binding chaperones, including trigger factor, Hsp70, and prefoldin, stabilize elongating chains on ribosomes in a nonaggregated state. Folding in the cytosol is achieved either on controlled chain release from these factors or after transfer of newly synthesized proteins to downstream chaperones, such as the chaperonins. These are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. Understanding how the thousands of different proteins synthesized in a cell use this chaperone machinery has profound implications for biotechnology and medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hartl, F Ulrich -- Hayer-Hartl, Manajit -- New York, N.Y. -- Science. 2002 Mar 8;295(5561):1852-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Biochemistry, Max-Planck-Institut fur Biochemie, Am Klopferspitz 18A, D-82152 Martinsried, Germany. uhartl@biochem.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11884745" target="_blank"〉PubMed〈/a〉
    Keywords: Chaperonins/chemistry/metabolism ; Cytosol/*chemistry ; Eukaryotic Cells/*chemistry/metabolism ; HSP70 Heat-Shock Proteins/chemistry/metabolism ; Macromolecular Substances ; Models, Molecular ; Molecular Chaperones/chemistry/*metabolism ; Prokaryotic Cells/*chemistry/metabolism ; Protein Binding ; Protein Biosynthesis ; Protein Conformation ; *Protein Folding ; Proteins/*chemistry/metabolism ; Ribosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-01-26
    Description: The organization of myosin into motile cellular structures requires precise temporal and spatial regulation. Proteins containing a UCS (UNC-45/CRO1/She4p) domain are necessary for the incorporation of myosin into the contractile ring during cytokinesis and into thick filaments during muscle development. We report that the carboxyl-terminal regions of UNC-45 bound and exerted chaperone activity on the myosin head. The amino-terminal tetratricopeptide repeat domain of UNC-45 bound the molecular chaperone Hsp90. Thus, UNC-45 functions both as a molecular chaperone and as an Hsp90 co-chaperone for myosin, which can explain previous findings of altered assembly and decreased accumulation of myosin in UNC-45 mutants of Caenorhabditis elegans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barral, Jose M -- Hutagalung, Alex H -- Brinker, Achim -- Hartl, F Ulrich -- Epstein, Henry F -- New York, N.Y. -- Science. 2002 Jan 25;295(5555):669-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11809970" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Caenorhabditis elegans/genetics/*metabolism ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cloning, Molecular ; HSP70 Heat-Shock Proteins/genetics/metabolism ; HSP90 Heat-Shock Proteins/genetics/metabolism ; Molecular Chaperones/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Myosins/*metabolism ; Peptide Fragments/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...