ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-11-01
    Description: Mutations in MeCP2, which encodes a protein that has been proposed to function as a global transcriptional repressor, are the cause of Rett syndrome (RT T), an X-linked progressive neurological disorder. Although the selective inactivation of MeCP2 in neurons is sufficient to confer a Rett-like phenotype in mice, the specific functions of MeCP2 in postmitotic neurons are not known. We find that MeCP2 binds selectively to BDNF promoter III and functions to repress expression of the BDNF gene. Membrane depolarization triggers the calcium-dependent phosphorylation and release of MeCP2 from BDNF promoter III, thereby facilitating transcription. These studies indicate that MeCP2 plays a key role in the control of neuronal activity-dependent gene regulation and suggest that the deregulation of this process may underlie the pathology of RT T.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wen G -- Chang, Qiang -- Lin, Yingxi -- Meissner, Alexander -- West, Anne E -- Griffith, Eric C -- Jaenisch, Rudolf -- Greenberg, Michael E -- HD 18655/HD/NICHD NIH HHS/ -- NS28829/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):885-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593183" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/*genetics ; Calcium/*metabolism ; Cell Membrane/physiology ; Cells, Cultured ; *Chromosomal Proteins, Non-Histone ; Cloning, Molecular ; CpG Islands ; DNA Methylation ; DNA-Binding Proteins/*metabolism ; Electrophoretic Mobility Shift Assay ; *Gene Expression Regulation ; Gene Silencing ; Histones/metabolism ; Methyl-CpG-Binding Protein 2 ; Methylation ; Mice ; Mice, Knockout ; Neurons/metabolism/physiology ; Phosphorylation ; Potassium Chloride/pharmacology ; Precipitin Tests ; Promoter Regions, Genetic ; Rats ; *Repressor Proteins ; Rett Syndrome/genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-06-01
    Description: Tumor necrosis factor (TNF) is a major mediator of apoptosis as well as inflammation and immunity, and it has been implicated in the pathogenesis of a wide spectrum of human diseases, including sepsis, diabetes, cancer, osteoporosis, multiple sclerosis, rheumatoid arthritis, and inflammatory bowel diseases. The interaction of TNF with TNF receptor-1 (TNF-R1) activates several signal transduction pathways. A common feature of each pathway is the TNF-induced formation of a multiprotein signaling complex at the cell membrane. Over the past decade, many of the components and mechanisms of these signaling pathways have been elucidated. We provide an overview of current knowledge of TNF signaling and introduce an STKE Connections Map that depicts a canonical view of this process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Guoqing -- Goeddel, David V -- New York, N.Y. -- Science. 2002 May 31;296(5573):1634-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tularik Inc., Two Corporate Drive, South San Francisco, CA 94080, USA. goeddel@tularik.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12040173" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/*metabolism ; Apoptosis ; Cell Membrane/metabolism ; Humans ; I-kappa B Kinase ; I-kappa B Proteins/metabolism ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/metabolism ; Models, Biological ; Multiprotein Complexes ; NF-kappa B/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Receptors, Tumor Necrosis Factor/*metabolism ; Receptors, Tumor Necrosis Factor, Type I ; *Signal Transduction ; Tumor Necrosis Factor-alpha/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-10-02
    Description: Nodal proteins, members of the transforming growth factor-beta (TGFbeta) superfamily, have been identified as key endogenous mesoderm inducers in vertebrates. Precise control of Nodal signaling is essential for normal development of embryos. Here, we report that zebrafish dapper2 (dpr2) is expressed in mesoderm precursors during early embryogenesis and is positively regulated by Nodal signals. In vivo functional studies in zebrafish suggest that Dpr2 suppresses mesoderm induction activities of Nodal signaling. Dpr2 is localized in late endosomes, binds to the TGFbeta receptors ALK5 and ALK4, and accelerates lysosomal degradation of these receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Lixia -- Zhou, Hu -- Su, Ying -- Sun, Zhihui -- Zhang, Haiwen -- Zhang, Long -- Zhang, Yu -- Ning, Yuanheng -- Chen, Ye-Guang -- Meng, Anming -- New York, N.Y. -- Science. 2004 Oct 1;306(5693):114-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Biology, Ministry of Education (MOE), Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15459392" target="_blank"〉PubMed〈/a〉
    Keywords: Activin Receptors, Type I/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Embryo, Nonmammalian/embryology/*metabolism ; *Embryonic Induction ; Endosomes/metabolism ; Fluorescent Antibody Technique ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Humans ; In Situ Hybridization ; Intracellular Signaling Peptides and Proteins ; Lysosomes/metabolism ; Mesoderm/*physiology ; Molecular Sequence Data ; Mutation ; Nodal Signaling Ligands ; Oligonucleotides, Antisense ; Protein-Serine-Threonine Kinases ; Proteins/metabolism ; Receptors, Transforming Growth Factor beta/*metabolism ; Signal Transduction ; Transforming Growth Factor beta/genetics/metabolism ; Zebrafish/*embryology/genetics/metabolism ; Zebrafish Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...