ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-12-25
    Description: The compression wave generated by a high-speed train entering a tunnel is studied theoretically and experimentally. It is shown that the pressure rise across the wavefront is given approximately by where ρo, U, M, Ao and A respectively denote the mean air density, train speed, train Mach number, and the cross-sectional areas of the train and the uniform section of the tunnel. A monopole source representing the displacement of air by the train is responsible for the main pressure rise across the wave, but second-order dipole sources must also be invoked to render theoretical predictions compatible with experiment. The principal dipole is produced by the compression wave drag acting on the nose of the train. A second dipole of comparable strength, but probably less significant in practice, is attributed to 'vortex sound' sources in the shear layers of the back-flow out of the tunnel of the air displaced by the train. Experiments are performed that confirm the efficacy of an 'optimally flared' portal whose cross-sectional area S(x) varies according to the formula where x is distance increasing negatively into the tunnel, ℓ is the prescribed length of the flared section, and AE is the tunnel entrance cross-sectional area, given by This portal is predicted theoretically to cause the pressure to increase linearly with distance across a compression wavefront of thickness ∼ ℓ/M, which is very much larger than in the absence of flaring. The increased wave thickness and linear pressure variation counteract the effect of nonlinear steepening of the wave in a long tunnel, and tend to suppress the environmentally harmful 'micro-pressure wave' radiated from the far end of the tunnel when the compression wave arrives. Our experiments are conducted at model scale using axisymmetric 'trains' projected at U ∼ 300 k.p.h. (M ≈ 0.25) along the axis of a cylindrical tunnel fitted with a flared portal. The blockage Ao/A = 0.2, which is comparable to the larger values encountered in high-speed rail operations.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-06-25
    Description: An analytical and experimental investigation is made of the compression wave generated when a train enters a tunnel fitted with a long, uniform hood with a rectangular window. The window is situated at the junction of the hood and tunnel, which are taken to have the same uniform cross-sectional area. An understanding of the mechanics of this canonical configuration is important for the design of tunnel entrance hoods for new high-speed trains, with speeds in excess of 300 km h-1. The compression wave is formed in two stages: as the train nose enters the hood and as it passes the window. The elevated pressure within the hood produces a flow of air from the window in the form of a high-speed jet, whose inertia generates an additional rise in pressure that propagates into the tunnel as a localized pulse. Multiple reflections from the window and the hood portal cause the temporary trapping of wave energy within the hood (prior to its radiation into the tunnel). All of these aspects of the flow are modelled analytically and the results are found to be in good accord with new model-scale measurements and flow visualization studies reported in this paper.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...