ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (237)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2008-08-01
    Description: During the North American Monsoon Experiment (NAME), an unprecedented surface dataset was collected over the core monsoon region. Observations from 157 surface sites in this region along with twice-daily Quick Scatterometer (QuikSCAT) oceanic winds were quality controlled and processed into a gridded dataset covering the domain (15°–40°N, 90°–120°W) at 1-h, 0.25° resolution for the period from 1 July to 15 August. Using this dataset, the mean, temporal variability, and diurnal characteristics of the monsoon surface flow are documented with detail not previously possible. Being independent of model data over land, these objectively analyzed surface products are compared to similar analyses from a special North American Regional Reanlysis for NAME (NARR_NAME) that was produced for the same period. Observed surface fields indicate that a robust land–sea breeze circulation is present over most of the Gulf of California (GoC) region in response to the strong diurnal heating of landmasses on both sides of the gulf. Many details of this land–sea breeze circulation are either missing (e.g., the nighttime/early morning land breeze) or poorly represented in the NARR_NAME. Observations from high elevation sites in the Sierra Madre Occidental (SMO) show weak downslope flows (∼0.5 m s−1), near-saturated conditions, and low cloud bases during nighttime hours. These observations are consistent with the notion that high-terrain nocturnal clouds limit radiational cooling and, thus, nocturnal downslope flows as well. Over land, a cool and dry bias is observed in the NARR_NAME surface fields. This dry bias appears to limit the formation of nighttime cloudiness at high elevations, resulting in stronger radiational cooling at night and slope flows in the NARR_NAME that are 2–3 times stronger than observed. In addition, the daytime transition to surface convergence and rising motion over the western slopes of the SMO occurs about 3 h earlier in the NARR_NAME than observed, which indicates the tendency in the reanalyses to initiate the daily convective cycle too early, similar to that observed in operational forecast models over this region. Following significant rainfall events, increased soil moisture and evapotranspiration due to vegetative green-up result in a smaller diurnal temperature signal over land and weaker slope flows over the SMO. In response to this weaker heating cycle, the magnitude and offshore extent of the land–sea breeze circulation is observed to diminish as the monsoon progresses.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-01-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-05-01
    Description: The 2004 North American Monsoon Experiment (NAME) provided an unprecedented observing network for studying the structure and evolution of the North American monsoon. This paper focuses on multiscale characteristics of the flow during NAME from the large scale to the mesoscale using atmospheric sounding data from the enhanced observing network. The onset of the 2004 summer monsoon over the NAME region accompanied the typical northward shift of the upper-level anticyclone or monsoon high over northern Mexico into the southwestern United States, but in 2004 this shift occurred slightly later than normal and the monsoon high did not extend as far north as usual. Consequently, precipitation over the southwestern United States was slightly below normal, although increased troughiness over the Great Plains contributed to increased rainfall over eastern New Mexico and western Texas. The first major pulse of moisture into the Southwest occurred around 13 July in association with a strong Gulf of California surge. This surge was linked to the westward passages of Tropical Storm Blas to the south and an upper-level inverted trough over northern Texas. The development of Blas appeared to be favored as an easterly wave moved into the eastern Pacific during the active phase of a Madden–Julian oscillation. On the regional scale, sounding data reveal a prominent sea breeze along the east shore of the Gulf of California, with a deep return flow as a consequence of the elevated Sierra Madre Occidental (SMO) immediately to the east. Subsidence produced a dry layer over the gulf, whereas a deep moist layer existed over the west slopes of the SMO. A prominent nocturnal low-level jet was present on most days over the northern gulf. The diurnal cycle of heating and moistening (Q1 and Q2) over the SMO was characterized by deep convective profiles in the mid- to upper troposphere at 1800 LT, followed by stratiform-like profiles at midnight, consistent with the observed diurnal evolution of precipitation over this coastal mountainous region. The analyses in the core NAME domain are based on a gridded dataset derived from atmospheric soundings only and, therefore, should prove useful in validating reanalyses and regional models.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-09-01
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-12-01
    Description: Radar data from the 2004 North American Monsoon Experiment (NAME) enhanced observing period were used to investigate diurnal trends and vertical structure of precipitating features relative to local terrain. Two-dimensional composites of reflectivity and rain rate, created from the two Servicio Meteorológico Nacional (SMN; Mexican Weather Service) C-band Doppler radars and NCAR’s S-band polarimetric Doppler radar (S-Pol), were divided into four elevation groups: over water, 0–1000 m (MSL), 1000–2000 m, and greater than 2000 m. Analysis of precipitation frequency and average rainfall intensity using these composites reveals a strong diurnal trend in precipitation similar to that observed by the NAME Event Rain Gauge Network. Precipitation occurs most frequently during the afternoon over the Sierra Madre Occidental (SMO), with the peak frequency moving over the lower elevations by evening. Also, the precipitation events over the lower elevations are less frequent but of greater intensity (rain rate) than those over the SMO. Precipitation echoes were partitioned into convective and stratiform components to allow for examination of vertical characteristics of convection using data from S-Pol. Analyses of reflectivity profiles and echo-top heights confirm that convection over the lower terrain is more intense and vertically developed than convection over the SMO. Warm-cloud depths, estimated from the Colorado State University–NAME upper-air and surface gridded analyses are, on average, 2 times as deep over the lower terrain as compared with over the SMO. Using a simplified stochastic model for drop growth, it is shown that these differences in warm-cloud depths could possibly explain the observed elevation-dependent trends in precipitation intensity.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-11-01
    Description: A case study of an intraseasonal oscillation (ISO) is investigated in the period leading up to its convectively active phase during the Mirai Indian Ocean Cruise for the Study of the MJO-Convection Onset (MISMO), which was conducted during boreal autumn 2006. Detailed observations, including apparent heat and moisture analyses, reveal that synoptic-scale variability of heat and moisture sources and sinks associated with the passage of three eastward-propagating cloud systems (EPCSs) was prominent during this period. These systems with periods of ∼6 days propagated through the MISMO domain, priming the atmosphere for a convectively active phase of the ISO. The prominent shallow heating during this period may explain the rather slow (8 m s−1) propagation speed for EPCSs. The zonal structure and sign of the frictional convergence show that these EPCSs have common characteristics to the frictional Kelvin mode studied by Ohuchi and Yamasaki. With the analyses of the period-averaged vertical profiles, the EPCSs were identified as the principal mechanism to moisten the atmosphere prior to the ISO convectively active phase.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-07-01
    Description: Heating profiles calculated from sounding networks and other observations during three Tropical Rainfall Measuring Mission (TRMM) field campaigns [the Kwajalein Experiment (KWAJEX), TRMM Large-Scale Biosphere–Atmosphere Experiment in Amazonia (LBA), and South China Sea Monsoon Experiment (SCSMEX)] show distinct geographical differences between oceanic, continental, and monsoon regimes. Differing cloud types (both precipitating and nonprecipitating) play an important role in determining the total diabatic heating profile. Variations in the vertical structure of the apparent heat source, Q1, can be related to the diurnal cycle, large-scale forcings such as atmospheric waves, and rain thresholds at each location. For example, TRMM-LBA, which occurred in the Brazilian Amazon, had mostly deep convection during the day while KWAJEX, which occurred in the western portion of the Pacific intertropical convergence zone, had more shallow and moderately deep daytime convection. Therefore, the afternoon height of maximum heating was more bottom heavy (i.e., heating below 600 hPa) during KWAJEX compared to TRMM-LBA. More organized convective systems with extensive stratiform rain areas and upper-level cloud decks tended to occur in the early and late morning hours during TRMM-LBA and KWAJEX, respectively, thereby causing Q1 profiles to be top heavy (i.e., maxima from 600 to 400 hPa) at those times. SCSMEX, which occurred in the South China Sea during the monsoon season, had top-heavy daytime and nighttime heating profiles suggesting that mesoscale convective systems occurred throughout the diurnal cycle, although more precipitation and upper-level cloud in the afternoon caused the daytime heating maximum to be larger. A tendency toward bottom- and top-heavy heating profile variations is also associated with the different cloud types that occurred before and after the passage of easterly wave troughs during KWAJEX, the easterly and westerly regimes during TRMM-LBA, and the monsoon onset and postonset active periods during SCSMEX. Rain thresholds based on heavy, moderate, and light/no-rain amounts can further differentiate top-heavy heating, bottom-heavy heating, and tropospheric cooling. These budget studies suggest that model calculations and satellite retrievals of Q1 must account for a large number of factors in order to accurately determine the vertical structure of diabatic heating associated with tropical cloud systems.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-01-01
    Description: The organizational modes of convection over the northern South China Sea (SCS) during the onset of the summer monsoon are documented using radar and sounding data from the May–June 1998 South China Sea Monsoon Experiment (SCSMEX). The onset occurred in mid-May with a rapid increase in deep convection over a 10-day period, accompanied by a major shift in the circulation over the east Asian region. Analysis of Bureau of Meteorology Research Centre (BMRC) radar data from Dongsha Island reveals a wide range of organizational modes of convection over the northern SCS. Proximity sounding data indicate that lower- and middle-level vertical wind shears exerted a dominant control over the orientation of convective lines within mesoscale convective systems in this region, as has been found in the Australian monsoon region and the equatorial western Pacific. The results are consistent with the conceptual model of LeMone et al. based on the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE), except two new organizational modes have been identified: shear-parallel bands for strong low-level shear and weak midlevel shear when there is weak instability and the air is dry aloft, and shear-parallel bands for strong shears in both layers when the shear vectors are in the same direction. Midlatitude influences, namely, the passage of troughs over southern China, likely contributed to these two additional modes. The stratiform rain fraction from the convective systems during the monsoon onset period was relatively small (26%) compared to the estimated average of about 40% for the entire Tropics. This small fraction is attributed to the weak instability during the onset period and relatively dry air in the upper troposphere.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-04-01
    Description: Observations from two enhanced sounding arrays during the May–June 1998 South China Sea Monsoon Experiment (SCSMEX) are used to determine and contrast the properties of convection over the northern and southern South China Sea (SCS). A regression analysis between SST data and monthly rainfall indicates that the ENSO signal exerted a strong influence on the rainfall distribution over the SCS during SCSMEX. This resulted in wetter-than-normal conditions along the south China coast and northern SCS, and generally drier-than-average conditions elsewhere, particularly over the Philippine Islands. The monsoon onset as determined by a shift in the low-level winds from easterly to southwesterly over the SCS occurred around mid-May. Over the southern enhanced sounding array (SESA), the onset was characterized by a rainy period associated with the passage of a convectively coupled Kelvin wave. This was followed by a weeklong break and then several episodic rain events with increasingly higher rain rates. Rainfall over the northern enhanced sounding array (NESA), which was largely out of phase with SESA rainfall events, occurred primarily during two 10-day periods separated by a weeklong break. Convective characteristics over the SESA, deduced primarily from heat and moisture budget profiles, indicate a high stratiform rain fraction consisting of alternating periods with decaying mesoscale systems that organized near the western Borneo coastline and shallower convective clouds. In contrast, NESA-averaged profiles were indicative of deep convection with a relatively small stratiform rain fraction, which was confirmed with radar analyses during the onset convective period. The diurnal cycle of convection is a dominant feature throughout much of the SCS. Over both budget regions, early morning (0500–0800 LT) convective systems were frequently initiated near the coasts, then gradually dissipated during the course of the day as the midlevel steering currents moved the systems away from the coastline. These decaying convective systems resulted in an early afternoon (1400 LT) rainfall peak over both sonde arrays.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-11-01
    Description: Diabatic heating (or Q1) profiles associated with specific cloud types are produced by matching synoptic cloud observations with a sounding budget analysis during the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX), which took place in the Marshall Islands from late July through mid-September 1999. Fair-weather cumulus clouds produce up to 1 K day−1 of heating below 850 hPa and are associated with cooling throughout much of the rest of the troposphere. Cumulus congestus clouds produce heating on the order of 1 K day−1 up to 575 hPa and cooling in the mid- to upper troposphere. Cumulonimbus clouds produce heating through the depth of the troposphere, with a maximum of 3.7 K day−1 near 550 hPa. Cloud types indicating widespread rain (stratus or cumulus fractus of bad weather at low levels and nimbostratus at midlevels) have the largest and most elevated heating, with values 〉10 K day−1 above 600 hPa. Other mid- and high-level cloud types are shown to be consistent with area-averaged rain rates and Q1 profiles. Profiles of the divergence and apparent moisture sink (or Q2) for convective clouds are also analyzed and are shown to be consistent with the physics of the heating profiles just described.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...