ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-10-15
    Description: This study investigates the possible changes that greenhouse global warming might generate in the characteristics of tropical cyclones (TCs). The analysis has been performed using scenario climate simulations carried out with a fully coupled high-resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the twentieth century with observations. The model appears to be able to simulate tropical cyclone–like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation, and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link TC occurrence with large-scale circulation. The results from the climate scenarios reveal a substantial general reduction of TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical western North Pacific (WNP) and North Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with reduced convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Finally, the action of the TCs remains well confined to the tropical region and the peak of TC number remains equatorward of 20° latitude in both hemispheres, notwithstanding the overall warming of the tropical upper ocean and the expansion poleward of warm SSTs.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-02-15
    Description: The effect of atmospheric horizontal resolution on tropical variability is investigated within the modified Scale Interaction Experiment (SINTEX) coupled model, SINTEX-Frontier (SINTEX-F), developed jointly at Istituto Nazionale di Geofisica e Vulcanologia (INGV), L’Institut Pierre-Simon Laplace (IPSL), and the Frontier Research System. The ocean resolution is not changed as the atmospheric model resolution is modified from spectral resolution 30 (T30) to spectral resolution 106 (T106). The horizontal resolutions of the atmospheric model T30 and T106 are investigated in terms of the coupling characteristics, frequency, and variability of the tropical ocean–atmosphere interactions. It appears that the T106 resolution is generally beneficial even if it does not eliminate all the major systematic errors of the coupled model. There is an excessive shift west of the cold tongue and ENSO variability, and high resolution also has a somewhat negative impact on the variability in the east Indian Ocean. A dominant 2-yr peak for the Niño-3 variability in the T30 model is moderated in the T106 as it shifts to a longer time scale. At high resolution, new processes come into play, such as the coupling of tropical instability waves, the resolution of coastal flows at the Pacific–Mexican coasts, and improved coastal forcing along the coast of South America. The delayed oscillator seems to be the main mechanism that generates the interannual variability in both models, but the models realize it in different ways. In the T30 model it is confined close to the equator, involving relatively fast equatorial and near-equatorial modes, and in the high-resolution model, it involves a wider latitudinal region and slower waves. It is speculated that the extent of the region that is involved in the interannual variability may be linked to the time scale of the variability itself.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-04-18
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-04-01
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-03-01
    Print ISSN: 0177-798X
    Electronic ISSN: 1434-4483
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-21
    Description: This SINTA Project establish a scientific cooperation between the Italian Scientific Institution INGV (National Institute of Geophysics and Volcanology) and the Serbian Scientific Institutions such as the Republic HydroMeteorological Service (RHMSS) and the University of Belgrade (UB). INGV contributes the global models, University of Belgrade and RHMSS contribute their expertise on regional models, parameterization ofphysical processes and numerical schemes. In particular, the main objectives of this Project are: 1) Perform a set of global simulations with a Global Climate Model (GCM) available at INGV; 2) Perform a set of regional simulations with the UB Regional Climate Model (RCM) forced by boundary conditions from the GCM simulations; 3) Test the convection parameterization developed at UB in the INGV global model; 4) Training and visit exchanges of Serbian scientists in Italy.
    Description: INGV
    Description: Unpublished
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Climate ; Mediterranean Area ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-19
    Description: A land surface model (LSM) has been included in the ECMWF Hamburg version 4 (ECHAM4) atmospheric general circulation model (AGCM). The LSM is an early version of the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) and it replaces the simple land surface scheme previously included in ECHAM4. The purpose of this paper is to document how a more exhaustive consideration of the land surface–vegetation processes affects the simulated boreal summer surface climate. To investigate the impacts on the simulated climate, different sets of Atmospheric Model Intercomparison Project (AMIP)-type simulations have been performed with ECHAM4 alone and with the AGCM coupled with ORCHIDEE. Furthermore, to assess the effects of the increase in horizontal resolution the coupling of ECHAM4 with the LSM has been implemented at different horizontal resolutions. The analysis reveals that the LSM has large effects on the simulated boreal summer surface climate of the atmospheric model. Considerable impacts are found in the surface energy balance due to changes in the surface latent heat fluxes over tropical and midlatitude areas covered with vegetation. Rainfall and atmospheric circulation are substantially affected by these changes. In particular, increased precipitation is found over evergreen and summergreen vegetated areas. Because of the socioeconomical relevance, particular attention has been devoted to the Indian summer monsoon (ISM) region. The results of this study indicate that precipitation over the Indian subcontinent is better simulated with the coupled ECHAM4–ORCHIDEE model compared to the atmospheric model alone.
    Description: Published
    Description: 255–278
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: partially_open
    Keywords: Land Atmosphere interactions ; Global climate models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-11-30
    Description: The Indian Ocean Dipole Mode (IODM) is examined by comparing the characteristics of oceanic and atmospheric circulations, heat budgets, and possible mechanisms of IODM between El Nino and non-El Nino years. ERA-40 reanalysis data, Reynold SST, and ocean analysis from Modular Ocean Model with the assimilation of the temperature profile from World Ocean Dataset 1998 are used to form three-year composites of IODM during El Nino (72, 82, 97) and non-El Nino (61, 67, 94) years. In El Nino years, two off-equatorial, anti-cyclonic circulations develop as a Rossby-wave response to the increased pressure over the Indian Ocean. The resultant winds from easterlies to northeasterlies (from southerlies to southeasterlies) in the northwestern (southeastern) tropical Indian Ocean warms (cools) the mixed layer temperature by inducing an anomalous zonal (meridional and vertical) component in the ocean current that advects the basic-state mixed layer temperature. In non-El Nino years, a monsoon-like flow induces winds from westerlies to southwesterlies (from southerlies to southeasterlies) in the northwestern (southeastern) Indian Ocean. As a result, the cold advection by the anomalous eastward current (northward current) in the northwestern (southeastern) tropical Indian Ocean becomes dominant in non-El Nino years. In addition, the anomalous winds in these regions are the same sign as the climatological monthly mean winds. Hence the anomalous latent and sensible heat fluxes further contribute to the decrease of SST in the northwestern and the southeastern Indian Ocean. Consequently, the cooling of the eastern tropical Indian Ocean rather than the warming of western tropical Indian Ocean becomes the major feature of the IODM during non-El Nino years.
    Description: Published
    Description: 2961–2977
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Description: open
    Keywords: Indian Ocean Dipole ; El Nino ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The effect of horizontal resolution on tropical variability is investigated within the modified SINTEX model, SINTEX-F, developed jointly at INGV, IPSL and at the Frontier Research System. The horizontal resolutions T30 and T106 are investigated in terms of the coupling characteristics, frequency and variability of the tropical ocean-atmosphere interactions. It appears that the T106 resolution is generally beneficial even if it does not eliminate all the major systematic errors of the coupled model. There is an excessive shift west of the cold tongue and ENSO variability, and high resolution has also a somewhat negative impact to the variability in the East Indian Ocean. A dominant two-year peak for the NINO3 variabilty in the T30 model is moderated in the T106 as it shifts to longer time scale. At high resolution new processes come into play, as the coupling of tropical instability waves, the resolution of coastal flows at the Pacific Mexican coasts and improved coastal forcing along the coast of South America. The delayed oscillator seems the main mechanism that generates the interannual variability in both models, but the models realize it in different ways. In the T30 model it is confined close to the equator, involving relatively fast equatorial and near-equatorial modes, in the high resolution, it involves a wider latitudinal region and slower waves. It is speculated that the extent of the region that is involved in the interannual variability may be linked to the time scale of the variability itself.
    Description: This research was partially supported by the Italy–USA Cooperation Program of the Italian Ministry of Environment and by the EU projects ENSEMBLES and DYNAMITE.
    Description: Published
    Description: 730-750
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: coupled models ; tropical variability ; ENSO system ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: This study investigates the possible changes that greenhouse global warming might generate in the characteristics of tropical cyclones (TCs). The analysis has been performed using scenario climate simulations carried out with a fully coupled high-resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the twentieth century with observations. The model appears to be able to simulate tropical cyclone–like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation, and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link TC occurrence with large-scale circulation. The results from the climate scenarios reveal a substantial general reduction of TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical western North Pacific (WNP) and North Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with reduced convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Finally, the action of the TCs remains well confined to the tropical region and the peak of TC number remains equatorward of 20° latitude in both hemispheres, notwithstanding the overall warming of the tropical upper ocean and the expansion poleward of warm SSTs.
    Description: Euro-Mediterranean Centre for Climate Change. European Community project ENSEMBLES, Contract GOCE-CT-2003-505539.
    Description: Published
    Description: 5204-5228
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Tropical Cyclone ; Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...