ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (14)
  • 2005-2009  (14)
Collection
Years
Year
  • 1
    Publication Date: 2011-08-24
    Description: The mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived. Increased levels of bromine are consistent with mobilization of soluble salts by thin films of liquid water, but the presence of olivine in analysed soil samples indicates that the extent of aqueous alteration of soils has been limited. Nickel abundances are enhanced at the immediate surface and indicate that the upper few millimetres of soil could contain up to one per cent meteoritic material.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature (ISSN 0028-0836); Volume 436; 7047; 49-54
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: Aqueous alteration is the change in composition of a rock, produced in response to interactions with H2O-bearing ices, liquids, and vapors by chemical weathering. A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Mineralogical indicators for aqueous alteration include goethite (lander), jarosite (lander), kieserite (orbiter), gypsum (orbiter) and other Fe-, Mg-, and Ca-sulfates (landers), halides (meteorites, lander), phyllosilicates (orbiter, meteorites), hematite and nanophase iron oxides (telescopic, orbiter, lander), and Fe-, Mg-, and Ca-carbonates (meteorites). Geochemical indicators (landers only) for aqueous alteration include Mg-, Ca-, and Fe-sulfates, halides, and secondary aluminosilicates such as smectite. Based upon these indicators, several styles of aqueous alteration have been suggested on Mars. Acid-sulfate weathering (e.g., formation of jarosite, gypsum, hematite, and goethite), may occur during (1) the oxidative weathering of ultramafic igneous rocks containing sulfides, (2) sulfuric acid weathering of basaltic materials, and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials. Near-neutral or alkaline alteration occurs when solutions with pH near or above 7 move through basaltic materials and form phases such as phyllosilicates and carbonates. Very low water:rock ratios appear to have been prominent at most of the sites visited by landed missions because there is very little alteration (leaching) of the original basaltic composition (i.e., the alteration is isochemical or in a closed hydrologic system). Most of the aqueous alteration appears to have occurred early in the history of the planet (3 to 4.5 billion years ago); however, minor aqueous alteration may be occurring at the surface even today (e.g., in thin films of water or by acid fog).
    Keywords: Geosciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: Exploration by the NASA rover Opportunity has revealed sulfate- and hematite-rich sedimentary rocks exposed in craters and other surface features of Meridiani Planum, Mars. Modern, Holocene, and Plio-Pleistocene deposits of the Rio Tinto, southwestern Spain, provide at least a partial environmental analog to Meridiani Planum rocks, facilitating our understanding of Meridiani mineral precipitation and diagenesis, while informing considerations of martian astrobiology. Oxidation, thought to be biologically mediated, of pyritic ore bodies by groundwaters in the source area of the Rio Tinto generates headwaters enriched in sulfuric acid and ferric iron. Seasonal evaporation of river water drives precipitation of hydronium jarosite and schwertmannite, while (Mg,Al,Fe(sup 3+))-copiapite, coquimbite, gypsum, and other sulfate minerals precipitate nearby as efflorescences where locally variable source waters are brought to the surface by capillary action. During the wet season, hydrolysis of sulfate salts results in the precipitation of nanophase goethite. Holocene and Plio-Pleistocene terraces show increasing goethite crystallinity and then replacement of goethite with hematite through time. Hematite in Meridiani spherules also formed during diagenesis, although whether these replaced precursor goethite or precipitated directly from groundwaters is not known. The retention of jarosite and other soluble sulfate salts suggests that water limited the diagenesis of Meridiani rocks. Diverse prokaryotic and eukaryotic microorganisms inhabit acidic and seasonally dry Rio Tinto environments. Organic matter does not persist in Rio Tinto sediments, but biosignatures imparted to sedimentary rocks as macroscopic textures of coated microbial streamers, surface blisters formed by biogenic gas, and microfossils preserved as casts and molds in iron oxides help to shape strategies for astrobiological investigation of Meridiani outcrops.
    Keywords: Exobiology
    Type: Earth and Planetary Science Letters (ISSN 0012-821X); Volume 240; Issue 1; 149-167
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: After sol 511 of its mission in Gusev Crater, Spirit traversed from the top of Husband Hill to its current Winter Haven on Low Ridge. M ssbauer analyses of several rock and soil targets along the traverse yielded further evidence for the wide-spread occurrence of aqueous processes in the Columbia Hills. The rock Independence was found on the flank of Husband Hill. It has low total Fe with about 24-30 % of its iron in ilmenite. This assemblage implies alteration under aqueous conditions; some phases were altered and elements such as Fe were leached out, while less soluble Fe-bearing phases such as ilmenite remain. The soil target Dead_Sea_Samra was found in subsurface soil revealed when the wheels dug into soil during the traverse from Husband Hill to Home Plate. Its M ssbauer spectrum shows a high abundance of ferric sulfate, similar to the Paso Robles soil targets found on Husband Hill. At its current location at Winter Haven Spirit investigated the target Halley which appears to be part of a wider-spread indurated layer underlying basaltic soil. This target shows the highest abundance of hematite in all Gusev soil and rock targets investigated to date. Opportunity at Meridiani Planum traversed from the 300 m diameter buried Erebus Crater towards 800 m Victoria Crater. The main components of Meridiani Planum jarosite-bearing outcrop rocks, basaltic soil, and a hematite lag remain remarkably constant in M ssbauer spectra throughout the traverse. Cobbles (rock fragments greater than 1 cm) show variability however. A meteorite (Barberton) has been identified based on kamacite peaks in the M ssbauer spectrum. Other cobbles show Mossbauer spectra similar to jarosite-bearing outcrops, or to basaltic rock, or mixtures thereof, suggesting an origin as impact breccias. Some cobbles were investigated at the edge of the annulus of Victoria Crater from which they may have been excavated. Mossbauer spectra reveal a basaltic signature, dominated by olivine and pyroxene. In general for both rovers the radioactive Mossbauer source became naturally weaker, but both instruments are still able to perform good quality measurements.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AGU Fall Meeting; 11-15- Dec. 2006; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Thermal Evolved-Gas Analyzer (TEGA) instrument onboard the 2007 Phoenix Lander will perform differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. Data from the instrument will be compared with Mars analog mineral standards, collected under TEGA Mars-like conditions to identify the volatile-bearing mineral phases [1] (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) found in the Martian soil. Concurrently, the instrument will be looking for indications of organics that might also be present in the soil. Organic molecules are necessary building blocks for life, although their presence in the ice or soil does not indicate life itself. The spacecraft will certainly bring organic contaminants to Mars even though numerous steps were taken to minimize contamination during the spacecraft assembly and testing. It will be essential to distinguish possible Mars organics from terrestrial contamination when TEGA instrument begins analyzing icy soils. To address the above, an Organic Free Blank (OFB) was designed, built, tested, and mounted on the Phoenix spacecraft providing a baseline for distinguishing Mars organics from terrestrial organic contamination. Our objective in this report is to describe some of the considerations used in selecting the OFB material and then report on the processing and analysis of the final candidate material
    Keywords: Lunar and Planetary Science and Exploration
    Type: 39th Lunar and Planetary Science Conference; Mar 10, 2008 - Mar 14, 2008; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The science instruments on the Mars Exploration Rover (MER) Spirit have provided an enormous amount of chemical and mineralogical data during more than 1450 sols of exploration at Gusev crater. The Moessbauer (MB) instrument identified 10 Fe-bearing phases at Gusev Crater: olivine, pyroxene, ilmenite, chromite, and magnetite as primary igneous phases and nanophase ferric oxide (npOx), goethite, hematite, a ferric sulfate, and pyrite/marcusite as secondary phases. The Miniature Thermal Emission Spectrometer (Mini-TES) identified some of these Fe-bearing phases (olivine and pyroxene), non- Fe-bearing phases (e.g., feldspar), and an amorphous high-SiO2 phase near Home Plate. Chemical data from the Alpha Particle X-Ray Spectrometer (APXS) provided the framework for rock classification, chemical weathering/alteration, and mineralogical constraints. APXS-based mineralogical constraints include normative calculations (with Fe(3+)/FeT from MB), elemental associations, and stoichiometry (e.g., 90% SiO2 implicates opalline silica). If Spirit had cached a set of representative samples and if those samples were returned to the Earth for laboratory analysis, what value is added by Mars Sample return (MSR) over and above the mineralogical and chemical data provided by MER?
    Keywords: Lunar and Planetary Science and Exploration
    Type: Ground Truth from Mars: Science Payoff; Apr 21, 2008 - Apr 23, 2008; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Light-toned, subsurface soil deposits have been excavated by the Mars Exploration Rover (MER) Spirit in six distinct locations along its traverse across the Columbia Hills of Gusev Crater. Samples at two of these sites have been analyzed in detail by the M ssbauer (MB) and Alpha Particle X-ray Spectrometers (APXS), providing information on iron mineralogy and elemental chemistry, respectively. These soils are referred to as "Paso Robles" class deposits.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 12, 2007 - Mar 16, 2007; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The NASA Mars Exploration Rovers (MER), Spirit and Opportunity, landed on the Red Planet in January 2004. Both rovers are equipped with a miniaturized Moessbauer spectrometer MIMOS II. Designed for a three months mission, both rovers and both Moessbauer instruments are still working after more than three years of exploring the Martian surface. At the beginning of the mission, with a landed intensity of the Moessbauer source of 150 mCi, a 30 minute touch and go measurement produced scientifically valuable data while a good quality Moessbauer spectrum was obtained after approximately eight hours. Now, after about five halflives of the sources have passed, Moessbauer integrations are routinely planned to last approx.48 hours. Because of this and other age-related hardware degradations of the two rover systems, measurements now occur less frequently, but are still of outstanding quality and scientific importance. Summarizing important Moessbauer results, Spirit has traversed the plains from her landing site in Gusev crater and is now, for the greater part of the mission, investigating the stratigraphically older Columbia Hills. Olivine in rocks and soils in the plains suggests that physical rather than chemical processes are currently active.
    Keywords: Lunar and Planetary Science and Exploration
    Type: International Conference on the Application of the Mossbauer Effect; Oct 14, 2007 - Oct 19, 2007; Kanpur; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...