ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerospace Medicine  (11)
  • 1
    Publication Date: 2019-07-19
    Description: Musculoskeletal activity accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation (nucleation) and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity are likely critical to the net effect. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a 4.3 psia exposure in non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity - one employing cycling and non-cycling exercise (CEVIS: 'cycle ergometer vibration isolation system') and one relying on non-cycling exercise only (ISLE: 'in-suit light exercise'). Current efforts investigate whether light exercise normal to 1 G environments increases the risk of DCS over microgravity simulation.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34708 , Aerospace Medical Association (AsMA) Annual Scientific Meeting: Human Performance and the Year of the Aerospace Medicine Professional; Apr 24, 2016 - Apr 28, 2016; Atlantic City, NJ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: INTRODUCTION: Pressure, oxygen (O2), and time are the pillars to effective treatment of decompression sickness (DCS). The NASA DCS Treatment Model links a decrease in computed bubble volume to the resolution of a symptom. The decrease in volume is realized in two stages: a) during the Boyle's Law compression and b) during subsequent dissolution of the gas phase by the O2 window. METHODS: The cumulative distribution of 154 symptoms that resolved during repressurization was described with a log-logistic density function of pressure difference (deltaP as psid) associated with symptom resolution and two other explanatory variables. The 154 symptoms originated from 119 cases of DCS during 969 exposures in 47 different altitude tests. RESULTS: The probability of symptom resolution [P(symptom resolution)] = 1 / (1+exp(- (ln(deltaP) - 1.682 + 1.089AMB - 0.00395SYMPTOM TIME) / 0.633)), where AMB is 1 when the subject ambulated as part of the altitude exposure or else 0 and SYMPTOM TIME is the elapsed time in min from start of the altitude exposure to recognition of a DCS symptom. The P(symptom resolution) was estimated from computed deltaP from the Tissue Bubble Dynamics Model based on the "effective" Boyle's Law change: P2 - P1 (deltaP, psid) = P1V1/V2 - P1, where V1 is the computed volume of a spherical bubble in a unit volume of tissue at low pressure P1 and V2 is computed volume after a change to a higher pressure P2. V2 continues to decrease through time at P2, at a faster rate if 100% ground level O2 was breathed. The computed deltaP is the effective treatment pressure at any point in time as if the entire deltaP was just from Boyle's Law compression. DISCUSSION: Given the low probability of DCS during extravehicular activity and the prompt treatment of a symptom with options through the model it is likely that the symptom and gas phase will resolve with minimum resources and minimal impact on astronaut health, safety, and productivity.
    Keywords: Aerospace Medicine
    Type: 2014 Human Research Program Investigators'' Workshop; Nov 15, 2013; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Ambulation imparts compressive and decompressive forces into the lower body, potentially creating quasi-stable micronuclei that influence the outcome of hypobaric depressurizations. Hypotheses: ambulation before the conclusion of a denitrogenation (prebreathe) protocol at 14.7 pounds per square inch absolute is not sufficient to increase the incidence of venous gas emboli (VGE) at 4.3 pounds per square inch absolute but is sufficient if performed after tissues become supersaturated with nitrogen at 4.3 pounds per square inch absolute.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34472 , 2016 NASA Human Research Program Investigators'' Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: INTRODUCTION. Some manufacturers of reduced oxygen (O2) breathing devices claim a comparable hypobaric hypoxia (HH) training experience by providing F(sub I) O2 〈 0.209 at or near sea level pressure to match the ambient O2 partial pressure (iso-pO2) of the target altitude. METHODS. Literature from investigators and manufacturers indicate that these devices may not properly account for the 47 mmHg of water vapor partial pressure that reduces the inspired partial pressure of O2 (P(sub I) O2). Nor do they account for the complex reality of alveolar gas composition as defined by the Alveolar Gas Equation. In essence, by providing iso-pO2 conditions for normobaric hypoxia (NH) as for HH exposures the devices ignore P(sub A)O2 and P(sub A)CO2 as more direct agents to induce signs and symptoms of hypoxia during acute training exposures. RESULTS. There is not a sufficient integrated physiological understanding of the determinants of P(sub A)O2 and P(sub A)CO2 under acute NH and HH given the same hypoxic pO2 to claim a device that provides isohypoxia. Isohypoxia is defined as the same distribution of hypoxia signs and symptoms under any circumstances of equivalent hypoxic dose, and hypoxic pO2 is an incomplete hypoxic dose. Some devices that claim an equivalent HH experience under NH conditions significantly overestimate the HH condition, especially when simulating altitudes above 10,000 feet (3,048 m). CONCLUSIONS. At best, the claim should be that the devices provide an approximate HH experience since they only duplicate the ambient pO2 at sea level as at altitude (iso-pO2 machines). An approach to reduce the overestimation is to at least provide machines that create the same P(sub I)O2 (iso-P(sub I)O2 machines) conditions at sea level as at the target altitude, a simple software upgrade.
    Keywords: Aerospace Medicine
    Type: JSC-CN-24704 , 83rd Annual Scientific Meeting of the Aerospace Medical Association; May 13, 2012 - May 17, 2012; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Musculoskeletal activity accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation (nucleation) and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity and the level of tissue supersaturation are likely critical to the net effect. Understanding the relationships is important to evaluate exercise prebreathe protocols and quantify decompression risk in gravity and microgravity environments. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a low pressure (4.3 psia; altitude equivalent of 30,300 ft [9,235 m]) simulation exposure of non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity. One protocol included both upright cycling and non-cycling exercise (CEVIS: 'cycle ergometer vibration isolation system') and one protocol relied on non-cycling exercise only (ISLE: 'in-suit light exercise'). CEVIS trial data serve as control data for the current study to investigate the influence of ambulation exercise in 1G environments on bubble formation and the subsequent risk of DCS.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34877 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: Musculoskeletal activity has the potential to both improve and compromise decompression safety. Exercise enhances inert gas elimination during oxygen breathing prior to decompression (prebreathe), but it may also promote bubble nuclei formation (nucleation), which can lead to gas phase separation and bubble growth and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity and the level of tissue supersaturation may be critical to the net effect. There are limited data available to evaluate cost-benefit relationships. Understanding the relationship is important to improve our understanding of the underlying mechanisms of nucleation in exercise prebreathe protocols and to quantify risk in gravity and microgravity environments. Data gathered during NASA's Prebreathe Reduction Program (PRP) studies combined oxygen prebreathe and exercise followed by low pressure (4.3 psi; altitude equivalent of 30,300 ft [9,235 m]) microgravity simulation to produce two protocols used by astronauts preparing for extravehicular activity. Both the Phase II/CEVIS (cycle ergometer vibration isolation system) and ISLE (in-suit light exercise) trials eliminated ambulation to more closely simulate the microgravity environment. The CEVIS results (35 male, 10 female) serve as control data for this NASA/Duke study to investigate the influence of ambulation exercise on bubble formation and the subsequent risk of DCS.
    Keywords: Aerospace Medicine
    Type: JSC-CN-29922 , 2014 NASA Human Research Program Investigators'' Workshop (HRP 2014); Feb 12, 2014 - Feb 13, 2014; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-30558 , NASA Human Research Program Investigators Workshop (HRP 2014); Feb 12, 2014 - Feb 13, 2014; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The availability of high-speed computers, data analysis software, and internet communication are compelling reasons to describe and make available computer databases from many disciplines. Methods: Human research using hypobaric chambers to understand and then prevent decompression sickness (DCS) during space walks has been conducted at the Johnson Space Center (JSC) from 1982 to 1998. The data are archived in the NASA Hypobaric Decompression Sickness Database, within an Access 2003 Relational Database. Results: There are 548 records from 237 individuals that participated in 31 unique tests. Each record includes physical characteristics, the denitrogenation procedure that was tested, and the outcome of the test, such as the report of a DCS symptom and the intensity of venous gas emboli (VGE) detected with an ultrasound Doppler bubble detector as they travel in the venous blood along the pulmonary artery on the way to the lungs. We documented 84 cases of DCS and 226 cases where VGE were detected. The test altitudes were 10.2, 10.1, 6.5, 6.0, and 4.3 pounds per square inch absolute (psia). 346 records are from tests conducted at 4.3 psia, the operating pressure of the current U.S. space suit. 169 records evaluate the Staged 10.2 psia Decompression Protocol used by the Space Shuttle Program. The mean exposure time at altitude was 242.3 minutes (SD = 80.6), with a range from 120 to 360 minutes. Among our test subjects, 96 records of exposures are females. The mean age of all test subjects was 31.8 years (SD = 7.17), with a range from 20 to 54 years. Discussion: These data combined with other published databases and evaluated with metaanalysis techniques would extend our understanding about DCS. A better understanding about the cause and prevention of DCS would benefit astronauts, aviators, and divers.
    Keywords: Aerospace Medicine
    Type: 79th Annual Scientific Meeting of the Aerospace Conference; May 11, 2008 - May 15, 2008; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-30331 , 2013 Human Research Program Investigators'' Workshop; Feb 12, 2013 - Feb 14, 2013; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Ambulation imparts compressive and decompressive forces into the lower body, potentially creating quasi-stable micronuclei that influence the outcome of hypobaric depressurizations.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34471 , Annual Scientific Meeting: "Human Performance and the Year of the Aerospace Medicine Professional"; Apr 24, 2016 - Apr 28, 2016; Atlantic City, NJ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...