ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-23
    Description: Breast carcinoma is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis and responses to available therapy. Recurrent somatic alterations in breast cancer have been described, including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration. Previous DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA, TP53, AKT1, GATA3 and MAP3K1, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking oestrogen and progesterone receptors and ERBB2 expression. The MAGI3-AKT3 fusion leads to constitutive activation of AKT kinase, which is abolished by treatment with an ATP-competitive AKT small-molecule inhibitor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148686/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148686/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerji, Shantanu -- Cibulskis, Kristian -- Rangel-Escareno, Claudia -- Brown, Kristin K -- Carter, Scott L -- Frederick, Abbie M -- Lawrence, Michael S -- Sivachenko, Andrey Y -- Sougnez, Carrie -- Zou, Lihua -- Cortes, Maria L -- Fernandez-Lopez, Juan C -- Peng, Shouyong -- Ardlie, Kristin G -- Auclair, Daniel -- Bautista-Pina, Veronica -- Duke, Fujiko -- Francis, Joshua -- Jung, Joonil -- Maffuz-Aziz, Antonio -- Onofrio, Robert C -- Parkin, Melissa -- Pho, Nam H -- Quintanar-Jurado, Valeria -- Ramos, Alex H -- Rebollar-Vega, Rosa -- Rodriguez-Cuevas, Sergio -- Romero-Cordoba, Sandra L -- Schumacher, Steven E -- Stransky, Nicolas -- Thompson, Kristin M -- Uribe-Figueroa, Laura -- Baselga, Jose -- Beroukhim, Rameen -- Polyak, Kornelia -- Sgroi, Dennis C -- Richardson, Andrea L -- Jimenez-Sanchez, Gerardo -- Lander, Eric S -- Gabriel, Stacey B -- Garraway, Levi A -- Golub, Todd R -- Melendez-Zajgla, Jorge -- Toker, Alex -- Getz, Gad -- Hidalgo-Miranda, Alfredo -- Meyerson, Matthew -- CA089393/CA/NCI NIH HHS/ -- CA122099/CA/NCI NIH HHS/ -- R01 CA122099/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jun 20;486(7403):405-9. doi: 10.1038/nature11154.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722202" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Breast Neoplasms/*classification/*genetics/pathology ; Core Binding Factor Alpha 2 Subunit/genetics ; Core Binding Factor beta Subunit/genetics ; DNA Mutational Analysis ; Exome/genetics ; Female ; Gene Fusion/genetics ; Humans ; Membrane Proteins/genetics ; Mexico ; Mutation/*genetics ; Proto-Oncogene Proteins c-akt/antagonists & inhibitors/genetics/metabolism ; Translocation, Genetic/*genetics ; Vietnam
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-18
    Description: Centrosome amplification has long been recognized as a feature of human tumours; however, its role in tumorigenesis remains unclear. Centrosome amplification is poorly tolerated by non-transformed cells and, in the absence of selection, extra centrosomes are spontaneously lost. Thus, the high frequency of centrosome amplification, particularly in more aggressive tumours, raises the possibility that extra centrosomes could, in some contexts, confer advantageous characteristics that promote tumour progression. Using a three-dimensional model system and other approaches to culture human mammary epithelial cells, we find that centrosome amplification triggers cell invasion. This invasive behaviour is similar to that induced by overexpression of the breast cancer oncogene ERBB2 (ref. 4) and indeed enhances invasiveness triggered by ERBB2. Our data indicate that, through increased centrosomal microtubule nucleation, centrosome amplification increases Rac1 activity, which disrupts normal cell-cell adhesion and promotes invasion. These findings demonstrate that centrosome amplification, a structural alteration of the cytoskeleton, can promote features of malignant transformation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061398/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061398/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Godinho, Susana A -- Picone, Remigio -- Burute, Mithila -- Dagher, Regina -- Su, Ying -- Leung, Cheuk T -- Polyak, Kornelia -- Brugge, Joan S -- Thery, Manuel -- Pellman, David -- 310472/European Research Council/International -- GM083299-1/GM/NIGMS NIH HHS/ -- R01 GM083299/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 5;510(7503):167-71. doi: 10.1038/nature13277. Epub 2014 Apr 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, Department of Pediatric Oncology, Dana-Farber Cancer Institute and Pediatric Hematology/Oncology, Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK (S.A.G.); Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA (C.T.L.). ; 1] Howard Hughes Medical Institute, Department of Pediatric Oncology, Dana-Farber Cancer Institute and Pediatric Hematology/Oncology, Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Institut de Recherche en Technologie et Science pour le Vivant, UMR5168 CEA/UJF/INRA/CNRS, Grenoble, France [2] Hopital Saint Louis, Institut Universitaire d'Hematologie, U1160 INSERM/AP-HP/Universite Paris Diderot, Paris 75010, France [3] CYTOO SA, Grenoble 38054, France. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK (S.A.G.); Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA (C.T.L.). ; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Institut de Recherche en Technologie et Science pour le Vivant, UMR5168 CEA/UJF/INRA/CNRS, Grenoble, France [2] Hopital Saint Louis, Institut Universitaire d'Hematologie, U1160 INSERM/AP-HP/Universite Paris Diderot, Paris 75010, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24739973" target="_blank"〉PubMed〈/a〉
    Keywords: Aneuploidy ; Breast/cytology/pathology ; Breast Neoplasms/genetics/*pathology ; Cell Adhesion ; Cell Line ; Cell Transformation, Neoplastic/genetics/*pathology ; Centrosome/*pathology ; Disease Progression ; Enzyme Activation ; Epithelial Cells/cytology/pathology ; *Genes, erbB-2 ; Humans ; Microtubules/chemistry/metabolism/pathology ; Neoplasm Invasiveness/pathology ; Receptor, ErbB-2/genetics/metabolism ; rac1 GTP-Binding Protein/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-01
    Description: Cancers arise through a process of somatic evolution that can result in substantial sub-clonal heterogeneity within tumours. The mechanisms responsible for the coexistence of distinct sub-clones and the biological consequences of this coexistence remain poorly understood. Here we used a mouse xenograft model to investigate the impact of sub-clonal heterogeneity on tumour phenotypes and the competitive expansion of individual clones. We found that tumour growth can be driven by a minor cell subpopulation, which enhances the proliferation of all cells within a tumour by overcoming environmental constraints and yet can be outcompeted by faster proliferating competitors, resulting in tumour collapse. We developed a mathematical modelling framework to identify the rules underlying the generation of intra-tumour clonal heterogeneity. We found that non-cell-autonomous driving of tumour growth, together with clonal interference, stabilizes sub-clonal heterogeneity, thereby enabling inter-clonal interactions that can lead to new phenotypic traits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184961/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184961/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marusyk, Andriy -- Tabassum, Doris P -- Altrock, Philipp M -- Almendro, Vanessa -- Michor, Franziska -- Polyak, Kornelia -- U54 CA143798/CA/NCI NIH HHS/ -- U54CA143798/CA/NCI NIH HHS/ -- England -- Nature. 2014 Oct 2;514(7520):54-8. doi: 10.1038/nature13556. Epub 2014 Jul 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [3] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] BBS Program, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA [3] Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA. ; 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [3] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA [4] BBS Program, Harvard Medical School, Boston, Massachusetts 02115, USA [5] Harvard Stem Cell Institute and the Broad Institute, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079331" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Cell Proliferation ; Clone Cells/*metabolism/*pathology ; Epigenesis, Genetic/genetics ; Female ; Interleukin-11/metabolism ; Mice ; Models, Biological ; Neoplasm Metastasis ; Neoplasms/*genetics/metabolism/*pathology ; Phenotype ; Tumor Microenvironment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-04-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Polyak, Kornelia -- Marusyk, Andriy -- England -- Nature. 2014 Apr 3;508(7494):52-3. doi: 10.1038/508052a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24695309" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*metabolism/*pathology ; Female ; Wnt1 Protein/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-02-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marusyk, Andriy -- Polyak, Kornelia -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):528-9. doi: 10.1126/science.1234415.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23372002" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Shape ; Clonal Evolution ; Clone Cells ; Colorectal Neoplasms/classification/*pathology/*prevention & control ; *Disease Eradication ; Drug Resistance, Neoplasm/genetics ; Epigenesis, Genetic ; Humans ; Phenotype
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
  • 8
    Publication Date: 2012-02-13
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2011-05-11
    Description: Current models of stem cell biology assume that normal and neoplastic stem cells reside at the apices of hierarchies and differentiate into nonstem progeny in a unidirectional manner. Here we identify a subpopulation of basal-like human mammary epithelial cells that departs from that assumption, spontaneously dedifferentiating into stem-like cells. Moreover, oncogenic transformation enhances the spontaneous conversion, so that nonstem cancer cells give rise to cancer stem cell (CSC)-like cells in vitro and in vivo. We further show that the differentiation state of normal cells-of-origin is a strong determinant of posttransformation behavior. These findings demonstrate that normal and CSC-like cells can arise de novo from more differentiated cell types and that hierarchical models of mammary stem cell biology should encompass bidirectional interconversions between stem and nonstem compartments. The observed plasticity may allow derivation of patient-specific adult stem cells without genetic manipulation and holds important implications for therapeutic strategies to eradicate cancer.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...