ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-11-26
    Description: Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50-70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma-an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative 'druggable' targets may inform effective long-term treatment strategies. Here we expressed approximately 600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058384/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058384/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johannessen, Cory M -- Boehm, Jesse S -- Kim, So Young -- Thomas, Sapana R -- Wardwell, Leslie -- Johnson, Laura A -- Emery, Caroline M -- Stransky, Nicolas -- Cogdill, Alexandria P -- Barretina, Jordi -- Caponigro, Giordano -- Hieronymus, Haley -- Murray, Ryan R -- Salehi-Ashtiani, Kourosh -- Hill, David E -- Vidal, Marc -- Zhao, Jean J -- Yang, Xiaoping -- Alkan, Ozan -- Kim, Sungjoon -- Harris, Jennifer L -- Wilson, Christopher J -- Myer, Vic E -- Finan, Peter M -- Root, David E -- Roberts, Thomas M -- Golub, Todd -- Flaherty, Keith T -- Dummer, Reinhard -- Weber, Barbara L -- Sellers, William R -- Schlegel, Robert -- Wargo, Jennifer A -- Hahn, William C -- Garraway, Levi A -- CA134502/CA/NCI NIH HHS/ -- DP2 OD002750/OD/NIH HHS/ -- DP2 OD002750-01/OD/NIH HHS/ -- K08 CA115927/CA/NCI NIH HHS/ -- K08 CA115927-05/CA/NCI NIH HHS/ -- P50 CA093683/CA/NCI NIH HHS/ -- R01 CA134502/CA/NCI NIH HHS/ -- R33 CA128625/CA/NCI NIH HHS/ -- RC2 CA148268/CA/NCI NIH HHS/ -- England -- Nature. 2010 Dec 16;468(7326):968-72. doi: 10.1038/nature09627. Epub 2010 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107320" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Cell Line, Tumor ; Clinical Trials as Topic ; *Drug Resistance, Neoplasm/drug effects/genetics ; Enzyme Activation/drug effects ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene Library ; Humans ; Indoles/pharmacology/therapeutic use ; MAP Kinase Kinase Kinases/genetics/*metabolism ; *MAP Kinase Signaling System ; Melanoma/drug therapy/enzymology/genetics/metabolism ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/*metabolism ; Open Reading Frames/genetics ; Protein Kinase Inhibitors/pharmacology/therapeutic use ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins B-raf/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Proto-Oncogene Proteins c-raf/genetics/metabolism ; Sulfonamides/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-13
    Description: The innate immune response is essential for combating infectious disease. Macrophages and other cells respond to infection by releasing cytokines, such as interleukin-1beta (IL-1beta), which in turn activate a well-described, myeloid-differentiation factor 88 (MYD88)-mediated, nuclear factor-kappaB (NF-kappaB)-dependent transcriptional pathway that results in inflammatory-cell activation and recruitment. Endothelial cells, which usually serve as a barrier to the movement of inflammatory cells out of the blood and into tissue, are also critical mediators of the inflammatory response. Paradoxically, the cytokines vital to a successful immune defence also have disruptive effects on endothelial cell-cell interactions and can trigger degradation of barrier function and dissociation of tissue architecture. The mechanism of this barrier dissolution and its relationship to the canonical NF-kappaB pathway remain poorly defined. Here we show that the direct, immediate and disruptive effects of IL-1beta on endothelial stability in a human in vitro cell model are NF-kappaB independent and are instead the result of signalling through the small GTPase ADP-ribosylation factor 6 (ARF6) and its activator ARF nucleotide binding site opener (ARNO; also known as CYTH2). Moreover, we show that ARNO binds directly to the adaptor protein MYD88, and thus propose MYD88-ARNO-ARF6 as a proximal IL-1beta signalling pathway distinct from that mediated by NF-kappaB. Finally, we show that SecinH3, an inhibitor of ARF guanine nucleotide-exchange factors such as ARNO, enhances vascular stability and significantly improves outcomes in animal models of inflammatory arthritis and acute inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, Weiquan -- London, Nyall R -- Gibson, Christopher C -- Davis, Chadwick T -- Tong, Zongzhong -- Sorensen, Lise K -- Shi, Dallas S -- Guo, Jinping -- Smith, Matthew C P -- Grossmann, Allie H -- Thomas, Kirk R -- Li, Dean Y -- R01 CA163970/CA/NCI NIH HHS/ -- R01 HL065648/HL/NHLBI NIH HHS/ -- R01 HL084516/HL/NHLBI NIH HHS/ -- U54 HL112311/HL/NHLBI NIH HHS/ -- England -- Nature. 2012 Dec 13;492(7428):252-5. doi: 10.1038/nature11603. Epub 2012 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Utah, Salt Lake City, Utah 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23143332" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/*metabolism ; Adjuvants, Immunologic/pharmacology ; Animals ; Arthritis/pathology ; Cadherins/metabolism ; Capillary Permeability/drug effects ; Cell Line ; Endothelial Cells/drug effects ; Enzyme Activation/drug effects ; GTPase-Activating Proteins/*metabolism ; Humans ; Interleukin-1beta/pharmacology ; Myeloid Differentiation Factor 88/*metabolism ; NF-kappa B/metabolism ; Protein Kinase Inhibitors/pharmacology ; Protein Transport/drug effects ; Purines/pharmacology ; Receptors, Interleukin/*metabolism ; Signal Transduction ; Thiophenes/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...