ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-09-19
    Description: Background: Lymphocytes act as a major component of the adaptive immune system, taking very crucial responsibility for immunity. Differences in proportions of T-cell subpopulations in peripheral blood among individuals under same conditions provide evidence of genetic control on these traits, but little is known about the genetic mechanism of them, especially in swine. Identification of the genetic control on these variants may help the genetic improvement of immune capacity through selection. Results: To identify genomic regions responsible for these immune traits in swine, a genome-wide association study was conducted. A total of 675 pigs of three breeds were involved in the study. At 21 days of age, all individuals were vaccinated with modified live classical swine fever vaccine. Blood samples were collected when the piglets were 20 and 35 days of age, respectively. Seven traits, including the proportions of CD4+, CD8+, CD4 + CD8+, CD4 + CD8[MINUS SIGN], CD4[MINUS SIGN]CD8+, CD4[MINUS SIGN]CD8[MINUS SIGN] and the ratio of CD4+ to CD8+ T cells were measured at the two ages. All the samples were genotyped for 62,163 single nucleotide polymorphisms (SNP) using the Illumina porcineSNP60k BeadChip. 40833 SNPs were selected after quality control for association tests between SNPs and each immune trait considered based on a single-locus regression model. To tackle the issue of multiple testing in GWAS, 10,000 permutations were performed to determine the chromosome-wise and genome-wise significance levels of association tests. In total, 61 SNPs with chromosome-wise significance level and 3 SNPs with genome-wise significance level were identified. 27 significant SNPs were located within the immune-related QTL regions reported in previous studies. Furthermore, several significant SNPs fell into the regions harboring known immunity-related genes, 14 of them fell into the regions which harbor some known T cell-related genes. Conclusions: Our study demonstrated that genome-wide association studies would be a feasible way for revealing the potential genetics variants affecting T-cell subpopulations. Results herein lay a preliminary foundation for further identifying the causal mutations underlying swine immune capacity in follow-up studies.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-02
    Description: Background: Diapause is programmed developmental arrest coupled with the depression of metabolic activity and the enhancement of stress resistance. Pupal diapause is induced by environmental signals and is prepared during the prediapause phase. In the cotton bollworm, Helicoverpa armigera, the prediapause phase, which contains two sub-phases, diapause induction and preparation, occurs in the larval stage. Here, we performed parallel proteomic and metabolomic analyses on H. armigera larval hemolymph during the prediapause phase. Results: By two-dimensional electrophoresis, 37 proteins were shown to be differentially expressed in diapause-destined larvae. Of these proteins, 28 were successfully identified by MALDI-TOF/TOF mass spectrometry. Moreover, a total of 22 altered metabolites were found in diapause-destined larval hemolymph by GC-MS analysis, and the levels of 17 metabolites were elevated and 5 were decreased. Conclusions: The proteins and metabolites with significantly altered levels play different roles in diapause-destined larvae, including diapause induction, metabolic storage, immune response, stress tolerance, and others. Because hemolymph circulates through the whole body of an insect, these differences found in diapause-destined larvae most likely correspond to upstream endocrine signals and would further influence other organ/tissue activities to determine the insect's fact: diapause or development.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-14
    Description: Background: Reciprocal interactions between lung mesenchymal and epithelial cells play essential roles in lung organogenesis and homeostasis. Although the molecular markers and related animal models that target lung epithelial cells are relatively well studied, molecular markers of lung mesenchymal cells and the genetic tools to target and/or manipulate gene expression in a lung mesenchyme-specific manner are not available, which becomes a critical barrier to the study of lung mesenchymal biology and the related pulmonary diseases. Results: We have identified a mouse Tbx4 gene enhancer that contains conserved DNA sequences across many vertebrate species with lung or lung-like gas exchange organ. We then generate a mouse line to express rtTA/LacZ under the control of the Tbx4 lung enhancer, and therefore a Tet-On inducible transgenic system to target lung mesenchymal cells at different developmental stages. By combining a Tbx4-rtTA driven Tet-On inducible Cre expression mouse line with a Cre reporter mouse line, the spatial-temporal patterns of Tbx4 lung enhancer targeted lung mesenchymal cells were defined. Pulmonary endothelial cells and vascular smooth muscle cells were targeted by the Tbx4-rtTA driver line prior to E11.5 and E15.5, respectively, while other subtypes of lung mesenchymal cells including airway smooth muscle cells, fibroblasts, pericytes could be targeted during the entire developmental stage. Conclusion: Developmental lung mesenchymal cells can be specifically marked by Tbx4 lung enhancer activity. With our newly created Tbx4 lung enhancer-driven Tet-On inducible system, lung mesenchymal cells can be specifically and differentially targeted in vivo at the first time by controlling the doxycycline induction time window. This novel system provides a unique tool to study lung mesenchymal cell lineages and gene functions in lung mesenchymal development, injury repair, and regeneration in mice.
    Electronic ISSN: 1741-7007
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-07
    Description: Background: Transforming growth factor-betas (TGF-betas), including beta2 (TGF-beta2), constitute a superfamily of multifunctional cytokines with important implications in morphogenesis, cell differentiation and tissue remodeling. TGF-beta2 is thought to play important roles in multiple developmental processes and neuron survival. However, before we carried out these investigations, a TGF-beta2 gene down-regulated transgenic animal model was needed. In the present study, expressional silencing TGF-beta2 was achieved by select predesigning interference short hairpin RNAs (shRNAs) targeting mouse TGF-beta2 genes. Results: Four homozygous transgenic offspring were generated by genetic manipulation and the protein expressions of TGF-beta2 were detected in different tissues of these mice. The transgenic mice were designated as Founder 66, Founder 16, Founder 53 and Founder 41. The rates of TGF-beta2 down-expression in different transgenic mice were evaluated. The present study showed that different TGF-beta2 expressions were detected in multiple tissues and protein levels of TGF-beta2 decreased at different rates relative to that of wild type mice. The expressions of TGF-beta2 proteins in transgenic mice (Founder 66) reduced most by 52%. Conclusions: The present study generated transgenic mice with TGF-beta2 down-regulated, which established mice model for systemic exploring the possible roles of TGF-beta2 in vivo in different pathology conditions.
    Electronic ISSN: 1471-2091
    Topics: Chemistry and Pharmacology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-08
    Description: Background Spina bifida is a malformation of the neural tube and is the most common of neural tube defects (NTDs). The etiology of spina bifida is largely unknown, although it is thought to be multi-factorial, involving multiple interacting genes and environmental factors. Mutations in transcriptional co-activator genes-Cited2, p300, Cbp, Tfap2α, Carm1 and Cart1 result in NTDs in murine models, thus prompt us to investigate whether homologues of these genes are associated with NTDs in humans. Methods Data and biological samples from 297 spina bifida cases and 300 controls were derived from a population-based case-control study conducted in California. 37 SNPs within CITED2, EP300, CREBBP, TFAP2A, CARM1 and ALX1 were genotyped using an ABI SNPlex assay. Odds ratios and 95% confidence intervals were calculated for alleles, genotypes and haplotypes to evaluate the risk for spina bifida. Results Several SNPs showed increased or decreased risk, including CITED2 rs1131431 (OR = 5.32, 1.04~27.30), EP300 rs4820428 (OR = 1.30, 1.01~1.67), EP300 rs4820429 (OR = 0.50, 0.26~0.50, in whites, OR = 0.7, 0.49~0.99 in all subjects), EP300 rs17002284 (OR = 0.43, 0.22~0.84), TFAP2A rs3798691 (OR = 1.78, 1.13~2.87 in Hispanics), CREBBP rs129986 (OR = 0.27, 0.11~0.69), CARM1 rs17616105 (OR = 0.41, 0.22~0.72 in whites). In addition, one haplotype block in EP300 and one in TFAP2A appeared to be associated with increased risk. Conclusions Modest associations were observed in CITED2, EP300, CREBBP, TFAP2A and CARM1 but not ALX1. However, these modest associations were not statistically significant after correction for multiple comparisons. Searching for potential functional variants and rare causal mutations is warranted in these genes.
    Electronic ISSN: 1471-2350
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-02-08
    Description: Background Soil microorganisms are mainly responsible for the complete mineralization of aromatic compounds that usually originate from plant products or environmental pollutants. In many cases, structurally diverse aromatic compounds can be converted to a small number of structurally simpler intermediates, which are metabolized to tricarboxylic acid intermediates via the β-ketoadipate pathway. This strategy provides great metabolic flexibility and contributes to increased adaptation of bacteria to their environment. However, little is known about the evolution and regulation of the β-ketoadipate pathway in root-associated diazotrophs. Results In this report, we performed a genome-wide analysis of the benzoate and 4-hydroxybenzoate catabolic pathways of Pseudomonas stutzeri A1501, with a focus on the functional characterization of the β-ketoadipate pathway. The P. stutzeri A1501 genome contains sets of catabolic genes involved in the peripheral pathways for catabolism of benzoate (ben) and 4-hydroxybenzoate (pob), and in the catechol (cat) and protocatechuate (pca) branches of the β-ketoadipate pathway. A particular feature of the catabolic gene organization in A1501 is the absence of the catR and pcaK genes encoding a LysR family regulator and 4-hydroxybenzoate permease, respectively. Furthermore, the BenR protein functions as a transcriptional activator of the ben operon, while transcription from the catBC promoter can be activated in response to benzoate. Benzoate degradation is subject to carbon catabolite repression induced by glucose and acetate in A1501. The HPLC analysis of intracellular metabolites indicated that low concentrations of 4-hydroxybenzoate significantly enhance the ability of A1501 to degrade benzoate. Conclusions The expression of genes encoding proteins involved in the β-ketoadipate pathway is tightly modulated by both pathway-specific and catabolite repression controls in A1501. This strain provides an ideal model system for further study of the evolution and regulation of aromatic catabolic pathways.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-01-07
    Description: Background Biological nitrogen fixation is highly controlled at the transcriptional level by regulatory networks that respond to the availability of fixed nitrogen. In many diazotrophs, addition of excess ammonium in the growth medium results in immediate repression of nif gene transcription. Although the regulatory cascades that control the transcription of the nif genes in proteobacteria have been well investigated, there are limited data on the kinetics of ammonium-dependent repression of nitrogen fixation. Results Here we report a global transcriptional profiling analysis of nitrogen fixation and ammonium repression in Pseudomonas stutzeri A1501, a root-associated and nitrogen-fixing bacterium. A total of 166 genes, including those coding for the global nitrogen regulation (Ntr) and Nif-specific regulatory proteins, were upregulated under nitrogen fixation conditions but rapidly downregulated as early as 10 min after ammonium shock. Among these nitrogen fixation-inducible genes, 95 have orthologs in each of Azoarcus sp. BH72 and Azotobacter vinelandii AvoP. In particular, a 49-kb expression island containing nif and other associated genes was markedly downregulated by ammonium shock. Further functional characterization of pnfA, a new NifA-σ54-dependent gene chromosomally linked to nifHDK, is reported. This gene encodes a protein product with an amino acid sequence similar to that of five hypothetical proteins found only in diazotrophic strains. No noticeable differences in the transcription of nifHDK were detected between the wild type strain and pnfA mutant. However, the mutant strain exhibited a significant decrease in nitrogenase activity under microaerobic conditions and lost its ability to use nitrate as a terminal electron acceptor for the support of nitrogen fixation under anaerobic conditions. Conclusions Based on our results, we conclude that transcriptional regulation of nif gene expression in A1501 is mediated by the nif- specific and ntr gene regulatory systems. Furthermore, microarray and mutational analyses revealed that many genes of unknown function may play some essential roles in controlling the expression or activity of nitrogenase. The findings presented here establish the foundation for further studies on the physiological function of nitrogen fixation-inducible genes.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...