ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (3)
Collection
Years
Year
  • 1
    Publication Date: 2017-03-27
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-27
    Description: Motivation Several recent studies showed that the application of deep neural networks advanced the state-of-the-art in named entity recognition (NER), including biomedical NER. However, the impact on performance and the robustness of improvements crucially depends on the availability of sufficiently large training corpora, which is a problem in the biomedical domain with its often rather small gold standard corpora. Results We evaluate different methods for alleviating the data sparsity problem by pretraining a deep neural network (LSTM-CRF), followed by a rather short fine-tuning phase focusing on a particular corpus. Experiments were performed using 34 different corpora covering five different biomedical entity types, yielding an average increase in F1-score of ∼2 pp compared to learning without pretraining. We experimented both with supervised and semi-supervised pretraining, leading to interesting insights into the precision/recall trade-off. Based on our results, we created the stand-alone NER tool HUNER incorporating fully trained models for five entity types. On the independent CRAFT corpus, which was not used for creating HUNER, it outperforms the state-of-the-art tools GNormPlus and tmChem by 5–13 pp on the entity types chemicals, species and genes. Availability and implementation HUNER is freely available at https://hu-ner.github.io. HUNER comes in containers, making it easy to install and use, and it can be applied off-the-shelf to arbitrary texts. We also provide an integrated tool for obtaining and converting all 34 corpora used in our evaluation, including fixed training, development and test splits to enable fair comparisons in the future. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-01
    Description: Magnitude estimation is a central task in seismology needed for a wide spectrum of applications ranging from seismicity analysis to rapid assessment of earthquakes. However, magnitude estimates at individual stations show significant variability, mostly due to propagation effects, radiation pattern and ambient noise. To obtain reliable and precise magnitude estimates, measurements from multiple stations are therefore usually averaged. This strategy requires good data availability, which is not always given, for example for near real time applications or for small events. We developed a method to achieve precise magnitude estimations even in the presence of only few stations. We achieve this by reducing the variability between single station estimates through a combination of optimization and machine learning techniques on a large catalogue. We evaluate our method on the large scale IPOC catalogue with 〉100 000 events, covering seismicity in the northern Chile subduction zone between 2007 and 2014. Our aim is to create a method that provides low uncertainty magnitude estimates based on physically meaningful features. Therefore we combine physics based correction functions with boosting tree regression. In a first step, we extract 110 features from each waveform, including displacement, velocity, acceleration and cumulative energy features. We correct those features for source, station and path effects by imposing a linear relation between magnitude and the logarithm of the features. For the correction terms, we define a non-parametric correction function dependent on epicentral distance and event depth and a station specific, adaptive 3-D source and path correction function. In a final step, we use boosting tree regression to further reduce interstation variance by combining multiple features. Compared to a standard, non-parametric, 1-D correction function, our method reduces the standard deviation of single station estimates by up to 57percent⁠, of which 17percent can be attributed to the improved correction functions, while boosting tree regression gives a further reduction of 40percent⁠. We analyse the resulting magnitude estimates regarding their residuals and relation to each other. The definition of a physics-based correction function enables us to inspect the path corrections and compare them to structural features. By analysing feature importance, we show that envelope and P wave derived features are key parameters for reducing uncertainties. Nonetheless the variety of features is essential for the effectiveness of the boosting tree regression. To further elucidate the information extractable from a single station trace, we train another boosting tree on the uncorrected features. This regression yields magnitude estimates with uncertainties similar to the single features after correction, but without using the earthquake location as required for applying the correction terms. Finally, we use our results to provide high precision magnitudes and their uncertainties for the IPOC catalogue.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...