ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (5)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2018-10-02
    Description: We assess the quality of estimated linear horizontal gradients in the atmospheric propagation delay above ground-based stations receiving signals from the Global Positioning System (GPS). Gradients are estimated from 11 years of observations from five sites in Sweden. Comparing these gradients with the corresponding ones from the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses show that GPS gradients confirm known seasonal effects both in the hydrostatic and the wet components. The two GPS sites equipped with microwave absorbing material below the antenna in general show higher correlation coefficients with the ECMWF gradients compared to the other three sites. We also estimated gradients using GPS data from two collocated antenna installations at the Onsala Space Observatory. Correlation coefficients for the east and the north wet gradients from GPS can for specific months reach up to 0.8 when compared to simultaneously estimated wet gradients from microwave radiometry. Based on the four years of results we note a strong seasonal dependence, from 0.3 during months with smaller gradients to 0.8 during months with larger gradients, typically during the warmer, and more humid, part of the year. Finally, a case study using a 15 days long continuous Very Long Baseline Interferometry (VLBI) campaign was carried out. The comparison of the gradients estimated from VLBI and GPS data indicates that a homogeneous sampling of the sky is a critical parameter.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-09-10
    Description: We have processed 20 years of GPS data from 8 sites in Sweden and 5 sites in Finland, using two different elevation cutoff angles 10° and 25°, to estimate the atmospheric integrated water vapour (IWV). We have also tested three additional elevation-angle-dependent parameters in the GPS data processing, i.e., (1) two different mapping functions, (2) with or without second order corrections for ionospheric effects, and (3) with or without elevation dependent data weighting. The results show that all these three parameters have insignificant impacts on the resulting linear IWV trends. We compared the GPS-derived IWV trends to the corresponding trends from radiosonde data at 7 nearby (
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-11-08
    Description: Global navigation satellite systems (GNSSs) have revolutionised positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is now an established atmospheric observing system, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60–70 % of atmospheric warming. In Europe, the application of GNSS in meteorology started roughly two decades ago, and today it is a well-established field in both research and operation. This review covers the state of the art in GNSS meteorology in Europe. The advances in GNSS processing for derivation of tropospheric products, application of GNSS tropospheric products in operational weather prediction and application of GNSS tropospheric products for climate monitoring are discussed. The GNSS processing techniques and tropospheric products are reviewed. A summary of the use of the products for validation and impact studies with operational numerical weather prediction (NWP) models as well as very short weather prediction (nowcasting) case studies is given. Climate research with GNSSs is an emerging field of research, but the studies so far have been limited to comparison with climate models and derivation of trends. More than 15 years of GNSS meteorology in Europe has already achieved outstanding cooperation between the atmospheric and geodetic communities. It is now feasible to develop next-generation GNSS tropospheric products and applications that can enhance the quality of weather forecasts and climate monitoring. This work is carried out within COST Action ES1206 advanced global navigation satellite systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC, http://gnss4swec.knmi.nl).
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-06
    Description: Global Navigation Satellite Systems (GNSS) have revolutionised positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is now an established atmospheric observing system, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60–70 % of atmospheric warming. In Europe, the application of GNSS in meteorology started roughly two decades ago and today it is a well-established research field. This review covers the state-of-the-art in GNSS meteorology in Europe. Discussed are the advances in GNSS processing for derivation of tropospheric products, application of GNSS tropospheric products in operational weather prediction and application of GNSS tropospheric products for climate monitoring. Reviewed are the GNSS processing techniques and tropospheric products. Given is a summary of the use of the products for validation and impact studies with operational Numerical Weather Prediction (NWP) models as well as very short weather prediction (nowcasting) case studies. Climate research with GNSS is an emerging field of research, the studies so far have been limited to comparison with the climate models and derivation of trends. More than 15 years of GNSS meteorology in Europe has already achieved outstanding cooperation between the atmospheric and geodetic communities. It is now feasible to develop next-generation GNSS tropospheric products and applications that can enhance the quality of weather forecasts and climate monitoring. This work is carried out within COST Action ES1206 "Advanced Global Navigation Satellite Systems tropospheric products for monitoring Severe Weather Events and Climate" (GNSS4SWEC, http://gnss4swec.knmi.nl ).
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: We have studied linear horizontal gradients in the atmospheric propagation delay above ground-based stations receiving signals from the Global Positioning System (GPS). Gradients were estimated from 11 years of observations from five sites in Sweden. Comparing these gradients with the corresponding ones from the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses shows that GPS gradients detect effects over different timescales caused by the hydrostatic and the wet components. The two stations equipped with microwave-absorbing material below the antenna, in general, show higher correlation coefficients with the ECMWF gradients compared to the other three stations. We also estimated gradients using 4 years of GPS data from two co-located antenna installations at the Onsala Space Observatory. Correlation coefficients for the east and the north wet gradients, estimated with a temporal resolution of 15 min from GPS data, can reach up to 0.8 for specific months when compared to simultaneously estimated wet gradients from microwave radiometry. The best agreement is obtained when an elevation cut-off angle of 3∘ is applied in the GPS data processing, in spite of the fact that the radiometer does not observe below 20∘. We also note a strong seasonal dependence in the correlation coefficients, from 0.3 during months with smaller gradients to 0.8 during months with larger gradients, typically during the warmer and more humid part of the year. Finally, a case study using a 15 d long continuous very-long-baseline interferometry (VLBI) campaign was carried out. The comparison of the gradients estimated from VLBI and GPS data indicates that a homogeneous and frequent sampling of the sky is a critical parameter.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...