ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (53)
Collection
Keywords
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Steinle, Lea; Maltby, Johanna; Treude, Tina; Kock, Annette; Bange, Hermann Werner; Engbersen, Nadine; Zopfi, Jakob; Lehmann, Moritz F; Niemann, Helge (2017): Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters. Biogeosciences, 14(6), 1631-1645, https://doi.org/10.5194/bg-14-1631-2017
    Publication Date: 2023-03-03
    Description: Coastal seas may account for more than 75% of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from where it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially controlled by the availability of dissolved methane and oxygen, as well as temperature, salinity, and hydrographic dynamics, and all of these factors undergo strong temporal fluctuations in coastal ecosystems. In order to elucidate the key environmental controls, specifically the effect of oxygen availability, on MOx in a seasonally stratified and hypoxic coastal marine setting, we conducted a 2-year time-series study with measurements of MOx and physico-chemical water column parameters in a coastal inlet in the southwestern Baltic Sea (Eckernförde Bay). We found that MOx rates generally increased toward the seafloor, but were not directly linked to methane concentrations. MOx exhibited a strong seasonal variability, with maximum rates (up to 11.6 nmol l-1 d-1) during summer stratification when oxygen concentrations were lowest and bottom-water temperatures were highest. Under these conditions, 70-95% of the sediment-released methane was oxidized, whereas only 40-60% were consumed during the mixed and oxygenated periods. Laboratory experiments with manipulated oxygen concentrations in the range of 0.2-220 µmol l-1 revealed a sub-micromolar oxygen-optimum for MOx at the study site. In contrast, the fraction of methane-carbon incorporation into the bacterial biomass (compared to the total amount of oxidised methane) was up to 38-fold higher at saturated oxygen concentrations, suggesting a different partitioning of catabolic and anabolic processes under oxygen-replete and oxygen-starved conditions, respectively. Our results underscore the importance of MOx in mitigating methane emission from coastal waters and indicate an organism-level adaptation of the water column methanotrophs to hypoxic conditions.
    Keywords: Boknis_Eck_1957; Bottle number; CTD/Rosette; CTD-RO; DATE/TIME; DEPTH, water; Methane; Methane, standard deviation; Methane oxidation rate; Methane oxidation rate, standard deviation; Oxygen; Salinity; Temperature, water; Turnover rate, methane oxidation; Turnover rate, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 478 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-13
    Keywords: Boknis_Eck_1957; Cast number; Chlorophyll a; CTD/Rosette; CTD-RO; DATE/TIME; DEPTH, water; Flag; Latitude of event; Longitude of event; Nitrate; Nitrite; Oxygen; Phosphate; Salinity; Sample code/label; Silicon dioxide; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 44574 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-30
    Description: N2 and C fixation rates, particulate organic carbon (POC) and particulate organic nitrogen (PON) from the top 500 m of the water column, cruise ORV Sagar Kanya to the BoB during the winter monsoon in January 2014.
    Keywords: Bay of Bengal; Carbon, organic, particulate; Carbon, organic, particulate, standard deviation; Carbon fixation rate; Carbon fixation rate, standard deviation; C fixation; CTD/Rosette; CTD-RO; DEPTH, water; Event label; Latitude of event; Longitude of event; N2 fixation; Nitrogen, organic, particulate; Nitrogen, organic, particulate, standard deviation; Nitrogen fixation rate; Nitrogen fixation rate, standard deviation; ORV_Sagar_Kanya_jan_2014; POC; PON; Sagar Kanya; Sample code/label; SK380; SK380-1; SK380-4; SK380-5
    Type: Dataset
    Format: text/tab-separated-values, 162 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-03
    Keywords: Boknis Eck; Carbon, inorganic, dissolved; Carbon, organic, particulate; Carbon/Nitrogen ratio; DEPTH, sediment/rock; Element analyser CNS, Carlo Erba NA1500; Gas chromatography; GC; Gravity corer; Ion chromatography (Metrohm Compact IC 761); LI2013; LI250913-3; Littorina; Methane; Methane, hydrogenotrophic methanogenesis, production rate; Multi N/C 2100 analyzer (Analytik Jena); Photometry; Sulfate; Sulfide
    Type: Dataset
    Format: text/tab-separated-values, 108 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-03
    Keywords: AL410; AL410_0107-1; Alkor (1990); Boknis Eck; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Event label; K08-13; KBP-478; Latitude of event; LI081113-2; LI170914-2; LI2013; LI2014; LI250913-2; Littorina; Longitude of event; Oxygen; PF180614-2; PF2013; PF2014; PF270613-2; Polarfuchs; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 3699 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-03-03
    Keywords: AL410; AL410_0107-1; Alkor (1990); Boknis Eck; Chlorophyll a; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Event label; K08-13; KBP-467; KBP-470; KBP-473; KBP-475; KBP-478; KBP-481; KBP-484; Latitude of event; LI081113-2; LI170914-2; LI2013; LI2014; LI250913-2; Littorina; Longitude of event; Methane; Month; PF180614-2; PF2013; PF2014; PF270613-2; Polarfuchs
    Type: Dataset
    Format: text/tab-separated-values, 27 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-03
    Keywords: AL410; AL410_0107-3; Alkor (1990); Boknis Eck; Carbon, inorganic, dissolved; Carbon, organic, particulate; Carbon/Nitrogen ratio; Date/Time of event; DEPTH, sediment/rock; Element analyser CNS, Carlo Erba NA1500; Event label; Gas chromatography; Ion chromatography (Metrohm Compact IC 761); K08-13; Latitude of event; LI081113-1; LI170914-1; LI2013; LI2014; LI250913-1; Littorina; Longitude of event; Methane; Methane, hydrogenotrophic methanogenesis, production rate; Methane, net methanogenesis, production rate; MUC; MultiCorer; Multi N/C 2100 analyzer (Analytik Jena); PF130314; PF180614-1; PF2013; PF2014; PF270613-1; Photometry; Polarfuchs; Sulfate; Sulfide
    Type: Dataset
    Format: text/tab-separated-values, 1076 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Brase, Lisa; Bange, Hermann Werner; Lendt, Ralf; Sanders, Tina; Dähnke, Kirstin (2017): High Resolution Measurements of Nitrous Oxide (N2O) in the Elbe Estuary. Frontiers in Marine Science, 4, https://doi.org/10.3389/fmars.2017.00162
    Publication Date: 2023-07-06
    Description: Nitrous oxide (N2O) is one of the most important greenhouse gases and a major sink for stratospheric ozone. Estuaries are sites of intense biological production and N2O emissions. We aimed to identify hot spots of N2O production and potential pathways contributing to N2O concentrations in the surface water of the tidal Elbe estuary. During two research cruises in April and June 2015, surface water N2O concentrations were measured along the salinity gradient of the Elbe estuary by using a laser-based on-line analyzer coupled to an equilibrator. Based on these high-resolution N2O profiles, N2O saturations, and fluxes across the surface water/atmosphere interface were calculated. Additional measurements of DIN concentrations, oxygen concentration, and salinity were performed. Highest N2O concentrations were determined in the Hamburg port region reaching maximum values of 32.3 nM in April 2015 and 52.2 nM in June 2015. These results identify the Hamburg port region as a significant hot spot of N2O production, where linear correlations of AOU-N2Oxs indicate nitrification as an important contributor to N2O production in the freshwater part. However, in the region with lowest oxygen saturation, sediment denitrification obviously affected water column N2O saturation. The average N2O saturation over the entire estuary was 201% (SD: ±94%), with an average estuarine N2O flux density of 48 ?mol m-2 d-1 and an overall emission of 0.18 Gg N2O y-1. In comparison to previous studies, our data indicate that N2O production pathways over the whole estuarine freshwater part have changed from predominant denitrification in the 1980s toward significant production from nitrification in the present estuary. Despite a significant reduction in N2O saturation compared to the 1980s, N2O concentrations nowadays remain on a high level, comparable to the mid-90s, although a steady decrease of DIN inputs occurred over the last decades. Hence, the Elbe estuary still remains an important source of N2O to the atmosphere.
    Keywords: Ammonium; Continuous flow analyser (AA3, Seal Analytics, Germany); Date/Time of event; DEPTH, water; Elbe Estuary; Event label; FerryBox system; Helmholtz-Zentrum Geesthacht, Institute of Coastal Research; HZG; Latitude of event; Longitude of event; LP201504; LP201504_Stat_1_1; LP201504_Stat_1_10; LP201504_Stat_1_11; LP201504_Stat_1_12; LP201504_Stat_1_13; LP201504_Stat_1_14; LP201504_Stat_1_15; LP201504_Stat_1_16; LP201504_Stat_1_17; LP201504_Stat_1_18; LP201504_Stat_1_19; LP201504_Stat_1_2; LP201504_Stat_1_3; LP201504_Stat_1_4; LP201504_Stat_1_5; LP201504_Stat_1_6; LP201504_Stat_1_7; LP201504_Stat_1_8; LP201504_Stat_1_9; LP201504_Stat_10_1; LP201504_Stat_10_10; LP201504_Stat_10_11; LP201504_Stat_10_12; LP201504_Stat_10_13; LP201504_Stat_10_14; LP201504_Stat_10_15; LP201504_Stat_10_16; LP201504_Stat_10_17; LP201504_Stat_10_18; LP201504_Stat_10_19; LP201504_Stat_10_2; LP201504_Stat_10_20; LP201504_Stat_10_3; LP201504_Stat_10_4; LP201504_Stat_10_5; LP201504_Stat_10_6; LP201504_Stat_10_7; LP201504_Stat_10_8; LP201504_Stat_10_9; LP201504_Stat_11_1; LP201504_Stat_11_10; LP201504_Stat_11_11; LP201504_Stat_11_12; LP201504_Stat_11_13; LP201504_Stat_11_14; LP201504_Stat_11_15; LP201504_Stat_11_16; LP201504_Stat_11_17; LP201504_Stat_11_18; LP201504_Stat_11_19; LP201504_Stat_11_2; LP201504_Stat_11_20; LP201504_Stat_11_3; LP201504_Stat_11_4; LP201504_Stat_11_5; LP201504_Stat_11_6; LP201504_Stat_11_7; LP201504_Stat_11_8; LP201504_Stat_11_9; LP201504_Stat_12_1; LP201504_Stat_12_10; LP201504_Stat_12_2; LP201504_Stat_12_3; LP201504_Stat_12_4; LP201504_Stat_12_5; LP201504_Stat_12_6; LP201504_Stat_12_7; LP201504_Stat_12_8; LP201504_Stat_12_9; LP201504_Stat_13_1; LP201504_Stat_13_10; LP201504_Stat_13_11; LP201504_Stat_13_12; LP201504_Stat_13_13; LP201504_Stat_13_14; LP201504_Stat_13_15; LP201504_Stat_13_2; LP201504_Stat_13_3; LP201504_Stat_13_4; LP201504_Stat_13_5; LP201504_Stat_13_6; LP201504_Stat_13_7; LP201504_Stat_13_8; LP201504_Stat_13_9; LP201504_Stat_14_1; LP201504_Stat_14_2; LP201504_Stat_14_3; LP201504_Stat_14_4; LP201504_Stat_14_5; LP201504_Stat_14_6; LP201504_Stat_15_1; LP201504_Stat_15_2; LP201504_Stat_15_3; LP201504_Stat_15_4; LP201504_Stat_17_1; LP201504_Stat_17_10; LP201504_Stat_17_11; LP201504_Stat_17_12; LP201504_Stat_17_13; LP201504_Stat_17_14; LP201504_Stat_17_15; LP201504_Stat_17_16; LP201504_Stat_17_17; LP201504_Stat_17_2; LP201504_Stat_17_3; LP201504_Stat_17_4; LP201504_Stat_17_5; LP201504_Stat_17_6; LP201504_Stat_17_7; LP201504_Stat_17_8; LP201504_Stat_17_9; LP201504_Stat_18_1; LP201504_Stat_18_2; LP201504_Stat_18_3; LP201504_Stat_19_1; LP201504_Stat_19_10; LP201504_Stat_19_11; LP201504_Stat_19_12; LP201504_Stat_19_13; LP201504_Stat_19_14; LP201504_Stat_19_15; LP201504_Stat_19_16; LP201504_Stat_19_2; LP201504_Stat_19_3; LP201504_Stat_19_4; LP201504_Stat_19_5; LP201504_Stat_19_6; LP201504_Stat_19_7; LP201504_Stat_19_8; LP201504_Stat_19_9; LP201504_Stat_2_1; LP201504_Stat_2_10; LP201504_Stat_2_11; LP201504_Stat_2_12; LP201504_Stat_2_13; LP201504_Stat_2_14; LP201504_Stat_2_15; LP201504_Stat_2_16; LP201504_Stat_2_17; LP201504_Stat_2_18; LP201504_Stat_2_19; LP201504_Stat_2_2; LP201504_Stat_2_3; LP201504_Stat_2_4; LP201504_Stat_2_5; LP201504_Stat_2_6; LP201504_Stat_2_7; LP201504_Stat_2_8; LP201504_Stat_2_9; LP201504_Stat_20_1; LP201504_Stat_20_10; LP201504_Stat_20_11; LP201504_Stat_20_12; LP201504_Stat_20_13; LP201504_Stat_20_14; LP201504_Stat_20_15; LP201504_Stat_20_16; LP201504_Stat_20_17; LP201504_Stat_20_18; LP201504_Stat_20_2; LP201504_Stat_20_3; LP201504_Stat_20_4; LP201504_Stat_20_5; LP201504_Stat_20_6; LP201504_Stat_20_7; LP201504_Stat_20_8; LP201504_Stat_20_9; LP201504_Stat_21_1; LP201504_Stat_21_10; LP201504_Stat_21_11; LP201504_Stat_21_12; LP201504_Stat_21_13; LP201504_Stat_21_14; LP201504_Stat_21_15; LP201504_Stat_21_16; LP201504_Stat_21_17; LP201504_Stat_21_18; LP201504_Stat_21_19; LP201504_Stat_21_2; LP201504_Stat_21_20; LP201504_Stat_21_21; LP201504_Stat_21_22; LP201504_Stat_21_23; LP201504_Stat_21_24; LP201504_Stat_21_25; LP201504_Stat_21_26; LP201504_Stat_21_27; LP201504_Stat_21_28; LP201504_Stat_21_29; LP201504_Stat_21_3; LP201504_Stat_21_30; LP201504_Stat_21_31; LP201504_Stat_21_32; LP201504_Stat_21_33; LP201504_Stat_21_34; LP201504_Stat_21_4; LP201504_Stat_21_5; LP201504_Stat_21_6; LP201504_Stat_21_7; LP201504_Stat_21_8; LP201504_Stat_21_9; LP201504_Stat_22_1; LP201504_Stat_22_10; LP201504_Stat_22_11; LP201504_Stat_22_12; LP201504_Stat_22_13; LP201504_Stat_22_14; LP201504_Stat_22_15; LP201504_Stat_22_16; LP201504_Stat_22_17; LP201504_Stat_22_18; LP201504_Stat_22_2; LP201504_Stat_22_3; LP201504_Stat_22_4; LP201504_Stat_22_5; LP201504_Stat_22_6; LP201504_Stat_22_7; LP201504_Stat_22_8; LP201504_Stat_22_9; LP201504_Stat_23_1; LP201504_Stat_23_10; LP201504_Stat_23_11; LP201504_Stat_23_12; LP201504_Stat_23_13; LP201504_Stat_23_14; LP201504_Stat_23_15; LP201504_Stat_23_16; LP201504_Stat_23_2; LP201504_Stat_23_3; LP201504_Stat_23_4; LP201504_Stat_23_5; LP201504_Stat_23_6; LP201504_Stat_23_7; LP201504_Stat_23_8; LP201504_Stat_23_9; LP201504_Stat_24_1; LP201504_Stat_24_10; LP201504_Stat_24_11; LP201504_Stat_24_12; LP201504_Stat_24_13; LP201504_Stat_24_14; LP201504_Stat_24_15; LP201504_Stat_24_16; LP201504_Stat_24_17; LP201504_Stat_24_18; LP201504_Stat_24_19; LP201504_Stat_24_2; LP201504_Stat_24_3; LP201504_Stat_24_4; LP201504_Stat_24_5; LP201504_Stat_24_6; LP201504_Stat_24_7; LP201504_Stat_24_8; LP201504_Stat_24_9; LP201504_Stat_3_1; LP201504_Stat_3_10; LP201504_Stat_3_11; LP201504_Stat_3_12; LP201504_Stat_3_13; LP201504_Stat_3_14; LP201504_Stat_3_15; LP201504_Stat_3_16; LP201504_Stat_3_17; LP201504_Stat_3_18; LP201504_Stat_3_19; LP201504_Stat_3_2; LP201504_Stat_3_20; LP201504_Stat_3_3; LP201504_Stat_3_4; LP201504_Stat_3_5; LP201504_Stat_3_6; LP201504_Stat_3_7; LP201504_Stat_3_8; LP201504_Stat_3_9; LP201504_Stat_4_1; LP201504_Stat_4_10; LP201504_Stat_4_11; LP201504_Stat_4_12; LP201504_Stat_4_13; LP201504_Stat_4_14; LP201504_Stat_4_15; LP201504_Stat_4_16; LP201504_Stat_4_17; LP201504_Stat_4_18; LP201504_Stat_4_19; LP201504_Stat_4_2; LP201504_Stat_4_20; LP201504_Stat_4_3; LP201504_Stat_4_4; LP201504_Stat_4_5; LP201504_Stat_4_6; LP201504_Stat_4_7; LP201504_Stat_4_8; LP201504_Stat_4_9; LP201504_Stat_5_1; LP201504_Stat_5_10; LP201504_Stat_5_11; LP201504_Stat_5_12; LP201504_Stat_5_13; LP201504_Stat_5_14; LP201504_Stat_5_15; LP201504_Stat_5_16; LP201504_Stat_5_17; LP201504_Stat_5_18; LP201504_Stat_5_19; LP201504_Stat_5_2; LP201504_Stat_5_20; LP201504_Stat_5_3; LP201504_Stat_5_4; LP201504_Stat_5_5; LP201504_Stat_5_6; LP201504_Stat_5_7; LP201504_Stat_5_8; LP201504_Stat_5_9; LP201504_Stat_6_1; LP201504_Stat_6_10; LP201504_Stat_6_11; LP201504_Stat_6_12; LP201504_Stat_6_13; LP201504_Stat_6_14; LP201504_Stat_6_15; LP201504_Stat_6_16; LP201504_Stat_6_17; LP201504_Stat_6_18; LP201504_Stat_6_19; LP201504_Stat_6_2; LP201504_Stat_6_20; LP201504_Stat_6_3; LP201504_Stat_6_4; LP201504_Stat_6_5; LP201504_Stat_6_6; LP201504_Stat_6_7; LP201504_Stat_6_8; LP201504_Stat_6_9; LP201504_Stat_7_1; LP201504_Stat_7_10; LP201504_Stat_7_11; LP201504_Stat_7_12; LP201504_Stat_7_13; LP201504_Stat_7_14; LP201504_Stat_7_15; LP201504_Stat_7_16; LP201504_Stat_7_17; LP201504_Stat_7_18; LP201504_Stat_7_19; LP201504_Stat_7_2; LP201504_Stat_7_20; LP201504_Stat_7_3; LP201504_Stat_7_4; LP201504_Stat_7_5; LP201504_Stat_7_6; LP201504_Stat_7_7; LP201504_Stat_7_8; LP201504_Stat_7_9; LP201504_Stat_8_1; LP201504_Stat_8_2; LP201504_Stat_8_3; LP201504_Stat_9_1; LP201504_Stat_9_10; LP201504_Stat_9_11; LP201504_Stat_9_12; LP201504_Stat_9_13; LP201504_Stat_9_14; LP201504_Stat_9_15; LP201504_Stat_9_2; LP201504_Stat_9_3; LP201504_Stat_9_4; LP201504_Stat_9_5; LP201504_Stat_9_6; LP201504_Stat_9_7; LP201504_Stat_9_8; LP201504_Stat_9_9; LP201506; LP201506_Stat_25_1; LP201506_Stat_25_10; LP201506_Stat_25_11; LP201506_Stat_25_12; LP201506_Stat_25_13; LP201506_Stat_25_14; LP201506_Stat_25_15; LP201506_Stat_25_16; LP201506_Stat_25_2; LP201506_Stat_25_3; LP201506_Stat_25_4; LP201506_Stat_25_5;
    Type: Dataset
    Format: text/tab-separated-values, 3585 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Maltby, Johanna; Steinle, Lea; Löscher, Carolin R; Bange, Hermann Werner; Fischer, Martin A; Schmidt, Mark; Treude, Tina (2018): Microbial methanogenesis in the sulfate-reducing zone of sediments in the Eckernförde Bay, SW Baltic Sea. Biogeosciences, 15(1), 137-157, https://doi.org/10.5194/bg-15-137-2018
    Publication Date: 2023-05-03
    Description: The presence of surface methanogenesis, located within the sulfate-reducing zone (0-30 centimeters below seafloor, cmbsf), was investigated in sediments of the seasonally hypoxic Eckernförde Bay, southwestern Baltic Sea. Water column parameters like oxygen, temperature and salinity together with porewater geochemistry and benthic methanogenesis rates were determined in the sampling area 'Boknis Eck' quarterly from March 2013 to September 2014, to investigate the effect of seasonal environmental changes on the rate and distribution of surface methanogenesis and to estimate its potential contribution to benthic methane emissions. Water column parameters where determined via CTD (temperature, salinity, pressure), as well as gas chromatography (methane) and fluorometric methods (chlorophyll a). For porewater and sediment geochemistry various method were used including photometry (sulfide), ion chromatography (sulfate), N/C Analysis (DIC), Carbo-Elba element analysis (POC, C/N), gas chromatography (methane). Sediment net methanogenesis rates were determined via the methane increase (measured with gas chromatography) over time in sediment slurry batch incubations. Sediment hydrogenotrophic methanogenesis was measured by adding radiotracer (14C-bicarbonate) to sediment samples and measuring the production of 14C-methane (via scintillation counting) after a specific period of time. For further details (sample preparation and analysis) see the related publication (Maltby et al., 2017, Biogeosciences Discussions)
    Keywords: Boknis_Eck_2013-14; MULT; Multiple investigations
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-10-28
    Keywords: ASTRA-OMZ; Bottle number; Climate - Biogeochemistry Interactions in the Tropical Ocean; CTD/Rosette; CTD-001; CTD-002; CTD-003; CTD-004; CTD-005; CTD-010; CTD-011; CTD-012; CTD-013; CTD-014; CTD-018; CTD-019; CTD-020; CTD-021; CTD-022; CTD-023; CTD-024; CTD-025; CTD-026; CTD-027; CTD-028; CTD-029; CTD-030; CTD-031; CTD-032; CTD-033; CTD-034; CTD-035; CTD-036; CTD-037; CTD-038; CTD-039; CTD-RO; DATE/TIME; DEPTH, water; Event label; Latitude of event; Longitude of event; Nitrate; Nitrate and Nitrite; Nitrite; Phosphate; Sample code/label; Sample ID; SFB754; Silicon dioxide; SO243; SO243_10-1; SO243_10-4; SO243_1-1; SO243_11-1; SO243_12-1; SO243_12-3; SO243_1-3; SO243_13-1; SO243_13-5; SO243_14-1; SO243_14-3; SO243_15-1; SO243_15-3; SO243_16-1; SO243_16-3; SO243_16-5; SO243_17-1; SO243_17-3; SO243_18-1; SO243_18-3; SO243_18-5; SO243_18-7; SO243_2-3; SO243_2-5; SO243_3-1; SO243_5-1; SO243_5-3; SO243_6-1; SO243_6-3; SO243_7-1; SO243_8-3; SO243_9-1; Sonne_2
    Type: Dataset
    Format: text/tab-separated-values, 4050 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...