ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • 2015-2019  (5)
Collection
Years
Year
  • 1
    Publication Date: 2019-07-13
    Description: We report on a set of clear and abrupt decreases in the high-frequency boundary of whistlerode emissions detected by Cassini at high latitudes (about 40) during the low-altitude proximal flybys f Saturn . These abrupt decreases or dropouts have start and stop locations that correspond to L shells at the dges of the A and B rings. Langmuir probe measurements can confirm, in some cases, that the abrupt decrease in the high-frequency whistler mode boundary is associated with a corresponding abrupt electron density dropout over evacuated field lines connected to the A and B rings. Wideband data also reveal electron plasma oscillations and whistler mode cutoffs consistent with a low-density plasma in the region. he observation of the electron density dropout along ring-connecting field lines suggests that strong ambipolar forces are operating, drawing cold ionospheric ions outward to fill the flux tubes. There is an analog with the refilling of flux tubes in the terrestrial plasmasphere. We suggest that the ring-connected electron density dropouts observed between 1.1 and 1.3 R(sub s) are connected to the low-density ring plasma cavity observed overtop the A and B rings during the 2004 Saturn orbital insertion pass.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN63121 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 45; 16; 8104-8110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We re-examine the radio and plasma wave observations obtained during the Cassini Saturn orbit insertion period, as the spacecraft flew over the northern ring surface into a radial distance of 1.3 Rs (over the C-ring). Voyager era studies suggest the rings are a source of micro-meteoroid generated plasma and dust, with theorized peak impact-created plasma outflows over the densest portion of the rings (central B-ring). In sharp contrast, the Cassini Radio and Plasma Wave System (RPWS) observations identify the presence of a ring-plasma cavity located in the central portion of the B-ring, with little evidence of impact-related plasma. While previous Voyager era studies have predicted unstable ion orbits over the C- ring, leading to field-aligned plasma transport to Saturns ionosphere, the Cassini RPWS observations do not reveal evidence for such instability-created plasma fountains. Given the passive ring loss processes observed by Cassini, we find that the ring lifetimes should extend 〉10(exp 9) years, and that there is limited evidence for prompt destruction (loss in 〈100 Myrs).
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN45495 , Icarus (ISSN 0019-1035); 292; 48-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The relationship between electron energy flux and the characteristic energy of electron distributions in the main auroral loss cone bridges the gap between predictions made by theory and measurements just recently available from Juno. For decades such relationships have been inferred from remote sensing observations of the Jovian aurora, primarily from the Hubble Space Telescope, and also more recently from Hisaki. However, to infer these quantities, remote sensing techniques had to assume properties of the Jovian atmospheric structure - leading to uncertainties in their profile. Juno's arrival and subsequent auroral passes have allowed us to obtain these relationships unambiguously for the first time, when the spacecraft passes through the auroral acceleration region. Using Juno /Jupiter Energetic particle Detector Instrument (JEDI), an energetic particle instrument, we present these relationships for the 30-kiloelectronvolts to 1-megaelectronvolts electron population. Observations presented here show that the electron energy flux in the loss cone is a nonlinear function of the characteristic or mean electron energy and supports both the predictions from Knight (1973, https://doi.org/10.1016/0032-0633(73)90093-7) and magnetohydrodynamic turbulence acceleration theories (e.g., Saur et al., 2003, https://doi.org/10.1029/2002GL015761). Finally, we compare the in situ analyses of Juno with remote Hisaki observations and use them to help constrain Jupiter's atmospheric profile. We find a possible solution that provides the best agreement between these data sets is an atmospheric profile that more efficiently transports the hydrocarbons to higher altitudes. If this is correct, it supports the previously published idea (e.g., Parkinson et al., 2006, https://doi.org/10.1029/2005JE002539) that precipitating electrons increase the hydrocarbon eddy diffusion coefficients in the auroral regions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN63152 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 123; 9; 7554-7567
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Using a particleincell electrostatic simulation, we examine the conditions that allow lowenergy ions, like those produced in the Enceladus plume, to be attracted and trapped within the sheaths of negatively charged dust grains. The conventional wisdom is that all new ions produced in the Enceladus plume are free to get picked up (i.e., accelerated by the local E field to then undergo vB acceleration). However, we suggest herein that the presence of submicroncharged dust in the plume impedes this pickup process since the local grain electric field greatly exceeds the corotation E fields. The simulations demonstrate that cold ions will tend to accelerate toward the negatively charged grains and become part of the ion plasma sheath. These trapped ions will move with the grains, exiting the plume region at the dust speed. We suggest that Cassini's Langmuir probe is measuring the entire ion population (free and trapped ions), while the Cassini magnetometer detects the magnetic perturbations associated with pickup currents from the smaller population of free ions, with this distinction possibly reconciling the ongoing debate in the literature on the ion density in the plume.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN40343 , Journal of Geophysical Research: Planets (ISSN 2169-9097) (e-ISSN 2169-9100); 122; 4; 729-743
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-28
    Description: Auroral hiss emissions are ubiquitous in planetary magnetospheres, particularly in regions where electric current systems are present. They are generally diagnostic of electrodynamic coupling between conductive bodies, thus making auroral and moon-connected magnetic field lines prime locations for their detection. However, the role of Saturn's rings as a dynamic conductive body has been elusive and of great interest to the community. Cassini's Grand Finale orbits afforded a unique opportunity to directly sample magnetic field lines connected to the main rings. Here we provide strong evidence for the persistent and organized presence of auroral hiss demonstrably associated with the main rings. This is in contrast to recent observations suggesting that Saturn's rings may be barriers to field-aligned currents. Our results provide a new view of Saturn's rings as a dynamic system that is in continuous and ordered electrodynamic coupling with the planet.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN73239 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 46; 13; 7166-7172
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...