ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: We evaluated the vertical profiles of both SO2 and sulfate in the AEROCOM (Aerosol Model Intercomparison) Phase II participating models. SO2 and sulfate show significant concentration gradient in both horizontal and vertical directions. Both online and offline aerosol transport models show large difference in the vertical distribution of sulfur species from surface all the way up to lower stratosphere. Comparison with available aircraft measurements suggests models agree with observations well when SO2 concentration is high. For the volcanic plumes, the injection height and magnitude determines initial SO2 plume distribution and following transport pattern. At high altitude, where the background concentration of SO2 is often below the detection limit of the current aircraft instruments and satellite retrievals, modeled SO2 and sulfate concentration, lifetime, and budget, as well as their uncertainties can be difficult to be accurately quantified.
    Keywords: Environment Pollution
    Type: ARC-E-DAA-TN38261 , American Geophysical Union Fall Meeting (AGU 2016); Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Biomass burning contributes about 40% of the global loading of carbonaceous aerosols, significantly affecting air quality and the climate system by modulating solar radiation and cloud properties. However, fire emissions are poorly constrained in models on global and regional levels. In this study, we investigate 3 global biomass burning emission datasets in NASA GEOS5, namely: (1) GFEDv3.1 (Global Fire Emissions Database version 3.1); (2) QFEDv2.4 (Quick Fire Emissions Dataset version 2.4); (3) FEERv1 (Fire Energetics and Emissions Research version 1.0). The simulated aerosol optical depth (AOD), absorption AOD (AAOD), angstrom exponent and surface concentrations of aerosol plumes dominated by fire emissions are evaluated and compared to MODIS, OMI, AERONET, and IMPROVE data over different regions. In general, the spatial patterns of biomass burning emissions from these inventories are similar, although the strength of the emissions can be noticeably different. The emissions estimates from QFED are generally larger than those of FEER, which are in turn larger than those of GFED. AOD simulated with all these 3 databases are lower than the corresponding observations in Southern Africa and South America, two of the major biomass burning regions in the world.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN29743 , AeroCom Workshop; Oct 05, 2015 - Oct 09, 2015; Frascati; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 0203 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN42996 , Atmospheric Environment (ISSN 1352-2310); 159; 11-25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...