ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration; Spacecraft Propulsion and Power  (2)
  • Cybernetics, Artificial Intelligence and Robotics; Astrodynamics  (1)
  • 2015-2019  (3)
Collection
Years
  • 2015-2019  (3)
Year
  • 1
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration's (NASA's) recently cancelled Asteroid Redirect Mission was proposed to rendezvous with and characterize a 100 m plus class near-Earth asteroid and provide the capability to capture and retrieve a boulder off of the surface of the asteroid and bring the asteroidal material back to cislunar space. Leveraging the best of NASA's science, technology, and human exploration efforts, this mission was originally conceived to support observation campaigns, advanced solar electric propulsion, and NASA's Space Launch System heavy-lift rocket and Orion crew vehicle. The asteroid characterization and capture portion of ARM was referred to as the Asteroid Redirect Robotic Mission (ARRM) and was focused on the robotic capture and then redirection of an asteroidal boulder mass from the reference target, asteroid 2008 EV5, into an orbit near the Moon, referred to as a Near Rectilinear Halo Orbit where astronauts would visit and study it. The purpose of this paper is to document the final reference trajectory of ARRM and the challenges and unique methods employed in the trajectory design of the mission.
    Keywords: Cybernetics, Artificial Intelligence and Robotics; Astrodynamics
    Type: AAS 17-585 , GRC-E-DAA-TN44883 , AAS/AIAA Astrodynamics Specialist Conference; Aug 20, 2017 - Aug 24, 2017; Stevenson, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.
    Keywords: Lunar and Planetary Science and Exploration; Spacecraft Propulsion and Power
    Type: E-19129 , GRC-E-DAA-TN25991 , Space 2015; Aug 31, 2015 - Sep 02, 2015; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: NASA continues to advance plans to extend human presence beyond low-Earth orbit leading to human exploration of Mars. The plans being laid out follow an incremental path, beginning with initial flight tests followed by deployment of a Deep Space Gateway (DSG) in cislunar space. This Gateway, will serve as the initial transportation node for departing and returning Mars spacecraft. Human exploration of Mars represents the next leap for humankind because it will require leaving Earth on a long mission with very limited return, rescue, or resupply capabilities. Although Mars missions are long, approaches and technologies are desired which can reduce the time that the crew is away from Earth. This paper builds off past analyses of NASA's exploration strategy by providing more detail on the performance of alternative in-space transportation options with an emphasis on reducing total mission duration. Key options discussed include advanced chemical, nuclear thermal, nuclear electric, solar electric, as well as an emerging hybrid propulsion system which utilizes a combination of both solar electric and chemical propulsion.
    Keywords: Lunar and Planetary Science and Exploration; Spacecraft Propulsion and Power
    Type: JSC-CN-40290 , Annual IEEE Aerospace Conference 2018; Mar 03, 2017 - Mar 10, 2017; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...