ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrodynamics  (7)
  • Lunar and Planetary Science and Exploration; Spacecraft Propulsion and Power  (2)
  • 2015-2019  (9)
  • 1
    Publication Date: 2019-07-20
    Description: As government and commercial interest in the exploration of the Moon and cislunar space has grown, Near Rectilinear Halo Orbits (NRHOs) have shown to be of particular interest as staging orbits for human exploration of the Moon. Once in such staging orbits, low thrust solar electric propulsion (SEP) can enable efficient transfer to other orbits in cislunar space. This paper captures ongoing analysis to design efficient transfers of a massive spacecraft from a L2 Southern NRHO to a Distant Retrograde Orbit, L1 Northern NRHO, and Flat L2 Halo Orbit using low thrust SEP. For each transfer type, reference transfer is designed for an assumed 39 t spacecraft with 26.6 kW SEP system. For each reference transfer, analysis is completed to understand the sensitivity of the transfer to changes in initial mass and SEP power and identify the optimal number of thrusters to use for a given combination of mass and power.
    Keywords: Astrodynamics
    Type: GRC-E-DAA-TN60183 , AIAA Astrodynamics Specialist Conference 2018; Aug 19, 2018 - Aug 23, 2018; Snowbird, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: This paper examines low thrust trajectories for delivery of a 40-kW solar electric propulsion spacecraft and potential additional payload to a desired NRHO. One option considered is a trans-lunar injection launch as a co-manifested payload on the Space Launch System. For this option, a reference trajectory is designed and a scan of launch dates is completed to understand the propellant mass sensitivity. A 15-day period cyclical variation in required propellant is observed that is attributed to solar gravity effects. A second option considered is to launch on a smaller commercial launch vehicle to a less energetic elliptical orbit and use SEP to spiral out to NRHO. For this option, analysis is completed to understand the trades between delivered mass to NRHO, total propellant required, time of flight, and solar array degradation. Results show that, while launching to lower altitudes can deliver greater payload mass to NRHO, significant solar array degradation can be observed.
    Keywords: Astrodynamics
    Type: GRC-E-DAA-TN60185 , AAS/AIAA Astrodynamics Specialist Conference; Aug 19, 2018 - Aug 23, 2018; Snowbird, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Monotonic Basin Hopping has been shown to be an effective method of solving low thrust trajectory optimization problems. This paper outlines an extension to the common serial implementation by parallelizing it over any number of available compute cores. The Parallel Monotonic Basin Hopping algorithm described herein is shown to be an effective way to more quickly locate feasible solutions, and improve locally optimal solutions in an automated way without requiring a feasible initial guess. The increased speed achieved through parallelization enables the algorithm to be applied to more complex problems that would otherwise be impractical for a serial implementation. Low thrust cislunar transfers and a hybrid Mars example case demonstrate the effectiveness of the algorithm. Finally, a preliminary scaling study quantifies the expected decrease in solve time compared to a serial implementation.
    Keywords: Astrodynamics
    Type: GRC-E-DAA-TN51148 , AIAA SciTech Forum, AAS/AIAA Space Flight Mechanics Meeting; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper examines low thrust trajectories for delivery of a 40-kW solar electric propulsion spacecraft and potential additional payload to a desired NRHO. One option considered is a trans-lunar injection launch as a co-manifested payload on the Space Launch System. For this option, a reference trajectory is designed and a scan of launch dates is completed to understand the propellant mass sensitivity. A 15-day period cyclical variation in required propellant is observed that is attributed to solar gravity effects. A second option considered is to launch on a smaller commercial launch vehicle to a less energetic elliptical orbit and use SEP to spiral out to NRHO. For this option, analysis is completed to understand the trades between delivered mass to NRHO, total propellant required, time of flight, and solar array degradation. Results show that, while launching to lower altitudes can deliver greater payload mass to NRHO, significant solar array degradation can be observed.
    Keywords: Astrodynamics
    Type: GRC-E-DAA-TN59588 , AIAA Astrodynamics Specialist Conference 2018; Aug 19, 2018 - Aug 23, 2018; Snowbird, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: As government and commercial interest in the exploration of the Moon and cislu- nar space has grown, Near Rectilinear Halo Orbits (NRHOs) have shown to be of particular interest as staging orbits for human exploration of the Moon. Once in such staging orbits, low thrust solar electric propulsion (SEP) can enable efficient transfer to other orbits in cislunar space. This paper captures ongoing analysis to design efficient transfers of a massive spacecraft from a L2 Southern NRHO to a Distant Retrograde Orbit, L1 Northern NRHO, and Flat L2 Halo Orbit using low thrust SEP. For each transfer type, reference transfer is designed for an assumed 39 t spacecraft with 26.6 kW SEP system. For each reference transfer, analysis is completed to understand the sensitivity of the transfer to changes in initial mass and SEP power and identify the optimal number of thrusters to use for a given combination of mass and power.
    Keywords: Astrodynamics
    Type: GRC-E-DAA-TN59586 , AIAA Astrodynamics Specialist Conference 2018; Aug 19, 2018 - Aug 23, 2018; Snowbird, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: National Aeronautics and Space Administrations (NASAs) proposed Asteroid Redirect Mission (ARM) is being designed to robotically capture and then redirect an asteroidal boulder mass into a stable orbit in the vicinity of the moon, where astronauts would be able to visit and study it. The current reference trajectory for the robotic portion, ARRM, assumes a launch on a Delta IV H in the end of the calendar year 2021, with a return for astronaut operations in cislunar space in 2026. The current baseline design allocates 245 days of stay time at the asteroid for operations and boulder collection. This paper outlines analysis completed by the ARRM mission design team to understand the sensitivity of the reference trajectory to launch date and asteroid stay time.
    Keywords: Astrodynamics
    Type: GRC-E-DAA-TN38898 , AAS/AIAA Space Flight Mechanics Meeting; Feb 05, 2017 - Feb 09, 2017; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.
    Keywords: Lunar and Planetary Science and Exploration; Spacecraft Propulsion and Power
    Type: E-19129 , GRC-E-DAA-TN25991 , Space 2015; Aug 31, 2015 - Sep 02, 2015; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: NASA continues to advance plans to extend human presence beyond low-Earth orbit leading to human exploration of Mars. The plans being laid out follow an incremental path, beginning with initial flight tests followed by deployment of a Deep Space Gateway (DSG) in cislunar space. This Gateway, will serve as the initial transportation node for departing and returning Mars spacecraft. Human exploration of Mars represents the next leap for humankind because it will require leaving Earth on a long mission with very limited return, rescue, or resupply capabilities. Although Mars missions are long, approaches and technologies are desired which can reduce the time that the crew is away from Earth. This paper builds off past analyses of NASA's exploration strategy by providing more detail on the performance of alternative in-space transportation options with an emphasis on reducing total mission duration. Key options discussed include advanced chemical, nuclear thermal, nuclear electric, solar electric, as well as an emerging hybrid propulsion system which utilizes a combination of both solar electric and chemical propulsion.
    Keywords: Lunar and Planetary Science and Exploration; Spacecraft Propulsion and Power
    Type: JSC-CN-40290 , Annual IEEE Aerospace Conference 2018; Mar 03, 2017 - Mar 10, 2017; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Monotonic Basin Hopping has been shown to be an effective method of solving low thrust trajectory optimization problems. This paper outlines an extension to the common serial implementation by parallelizing it over any number of available compute cores. The Parallel Monotonic Basin Hopping algorithm described herein is shown to be an effective way to more quickly locate feasible solutions, and improve locally optimal solutions in an automated way without requiring a feasible initial guess. The increased speed achieved through parallelization enables the algorithm to be applied to more complex problems that would otherwise be impractical for a serial implementation. Low thrust cislunar transfers and a hybrid Mars example case demonstrate the effectiveness of the algorithm. Finally, a preliminary scaling study quantifies the expected decrease in solve time compared to a serial implementation.,
    Keywords: Astrodynamics
    Type: GRC-E-DAA-TN49959 , AIAA SciTech Forum; Jan 08, 2018 - Jan 13, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...