ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI Publishing  (3)
  • 2015-2019  (3)
  • 1
    Publication Date: 2018-04-28
    Description: Remote Sensing, Vol. 10, Pages 682: Infrared Image Enhancement Using Adaptive Histogram Partition and Brightness Correction Remote Sensing doi: 10.3390/rs10050682 Authors: Minjie Wan Guohua Gu Weixian Qian Kan Ren Qian Chen Xavier Maldague Infrared image enhancement is a crucial pre-processing technique in intelligent urban surveillance systems for Smart City applications. Existing grayscale mapping-based algorithms always suffer from over-enhancement of the background, noise amplification, and brightness distortion. To cope with these problems, an infrared image enhancement method based on adaptive histogram partition and brightness correction is proposed. First, the grayscale histogram is adaptively segmented into several sub-histograms by a locally weighted scatter plot smoothing algorithm and local minima examination. Then, the fore-and background sub-histograms are distinguished according to a proposed metric called grayscale density. The foreground sub-histograms are equalized using a local contrast weighted distribution for the purpose of enhancing the local details, while the background sub-histograms maintain the corresponding proportions of the whole dynamic range in order to avoid over-enhancement. Meanwhile, a visual correction factor considering the property of human vision is designed to reduce the effect of noise during the procedure of grayscale re-mapping. Lastly, particle swarm optimization is used to correct the mean brightness of the output by virtue of a reference image. Both qualitative and quantitative evaluations implemented on real infrared images demonstrate the superiority of our method when compared with other conventional methods.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-25
    Description: Remote Sensing, Vol. 10, Pages 510: Total Variation Regularization Term-Based Low-Rank and Sparse Matrix Representation Model for Infrared Moving Target Tracking Remote Sensing doi: 10.3390/rs10040510 Authors: Minjie Wan Guohua Gu Weixian Qian Kan Ren Qian Chen Hai Zhang Xavier Maldague Infrared moving target tracking plays a fundamental role in many burgeoning research areas of Smart City. Challenges in developing a suitable tracker for infrared images are particularly caused by pose variation, occlusion, and noise. In order to overcome these adverse interferences, a total variation regularization term-based low-rank and sparse matrix representation (TV-LRSMR) model is designed in order to exploit a robust infrared moving target tracker in this paper. First of all, the observation matrix that is derived from the infrared sequence is decomposed into a low-rank target matrix and a sparse occlusion matrix. For the purpose of preventing the noise pixel from being separated into the occlusion term, a total variation regularization term is proposed to further constrain the occlusion matrix. Then an alternating algorithm combing principal component analysis and accelerated proximal gradient methods is employed to separately optimize the two matrices. For long-term tracking, the presented algorithm is implemented using a Bayesien state inference under the particle filtering framework along with a dynamic model update mechanism. Both qualitative and quantitative experiments that were examined on real infrared video sequences verify that our algorithm outperforms other state-of-the-art methods in terms of precision rate and success rate.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-03
    Description: Remote Sensing, Vol. 10, Pages 1039: A Level Set Method for Infrared Image Segmentation Using Global and Local Information Remote Sensing doi: 10.3390/rs10071039 Authors: Minjie Wan Guohua Gu Jianhong Sun Weixian Qian Kan Ren Qian Chen Xavier Maldague Infrared image segmentation plays a significant role in many burgeoning applications of remote sensing, such as environmental monitoring, traffic surveillance, air navigation and so on. However, the precision is limited due to the blurred edge, low contrast and intensity inhomogeneity caused by infrared imaging. To overcome these challenges, a level set method using global and local information is proposed in this paper. In our method, a hybrid signed pressure function is constructed by fusing a global term and a local term adaptively. The global term is represented by the global average intensity, which effectively accelerates the evolution when the evolving curve is far away from the object. The local term is represented by a multi-feature-based signed driving force, which accurately guides the curve to approach the real boundary when it is near the object. Then, the two terms are integrated via an adaptive weight matrix calculated based on the range value of each pixel. Under the framework of geodesic active contour model, a new level set formula is obtained by substituting the proposed signed pressure function for the edge stopping function. In addition, a Gaussian convolution is applied to regularize the level set function for the purpose of avoiding the computationally expensive re-initialization. By iteration, the object of interest can be segmented when the level set function converges. Both qualitative and quantitative experiments verify that our method outperforms other state-of-the-art level set methods in terms of accuracy and robustness with the initial contour being set randomly.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...