ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)  (11)
  • Royal Meteorological Society  (3)
  • 2015-2019  (14)
  • 1
    Publication Date: 2021-02-08
    Description: The impact of changes in incoming solar irradiance on stratospheric ozone abundances should be included in climate simulations to aid in capturing the atmospheric response to solar cycle variability. This study presents the first systematic comparison of the representation of the 11-year solar cycle ozone response (SOR) in chemistry–climate models (CCMs) and in pre-calculated ozone databases specified in climate models that do not include chemistry, with a special focus on comparing the recommended protocols for the Coupled Model Intercomparison Project Phase 5 and Phase 6 (CMIP5 and CMIP6). We analyse the SOR in eight CCMs from the Chemistry–Climate Model Initiative (CCMI-1) and compare these with results from three ozone databases for climate models: the Bodeker Scientific ozone database, the SPARC/Atmospheric Chemistry and Climate (AC&C) ozone database for CMIP5 and the SPARC/CCMI ozone database for CMIP6. The peak amplitude of the annual mean SOR in the tropical upper stratosphere (1–5hPa) decreases by more than a factor of 2, from around 5 to 2%, between the CMIP5 and CMIP6 ozone databases. This substantial decrease can be traced to the CMIP5 ozone database being constructed from a regression model fit to satellite and ozonesonde measurements, while the CMIP6 database is constructed from CCM simulations. The SOR in the CMIP6 ozone database therefore implicitly resembles the SOR in the CCMI-1 models. The structure in latitude of the SOR in the CMIP6 ozone database and CCMI-1 models is considerably smoother than in the CMIP5 database, which shows unrealistic sharp gradients in the SOR across the middle latitudes owing to the paucity of long-term ozone measurements in polar regions. The SORs in the CMIP6 ozone database and the CCMI-1 models show a seasonal dependence with enhanced meridional gradients at mid- to high latitudes in the winter hemisphere. The CMIP5 ozone database does not account for seasonal variations in the SOR, which is unrealistic. Sensitivity experiments with a global atmospheric model without chemistry (ECHAM6.3) are performed to assess the atmospheric impacts of changes in the representation of the SOR and solar spectral irradiance (SSI) forcing between CMIP5 and CMIP6. The larger amplitude of the SOR in the CMIP5 ozone database compared to CMIP6 causes a likely overestimation of the modelled tropical stratospheric temperature response between 11-year solar cycle minimum and maximum by up to 0.55K, or around 80% of the total amplitude. This effect is substantially larger than the change in temperature response due to differences in SSI forcing between CMIP5 and CMIP6. The results emphasize the importance of adequately representing the SOR in global models to capture the impact of the 11-year solar cycle on the atmosphere. Since a number of limitations in the representation of the SOR in the CMIP5 ozone database have been identified, we recommend that CMIP6 models without chemistry use the CMIP6 ozone database and the CMIP6 SSI dataset to better capture the climate impacts of solar variability. The SOR coefficients from the CMIP6 ozone database are published with this paper.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: The radiative effects induced by the zonally asymmetric part of the ozone field have been shown to significantly change the temperature of the NH winter polar cap, and correspondingly the strength of the polar vortex. In this paper, we aim to understand the physical processes behind these effects using the National Center for Atmospheric Research (NCAR)'s Whole Atmosphere Community Climate Model, run with 1960s ozone-depleting substances and greenhouse gases. We find a mid-winter polar vortex influence only when considering the quasi-biennial oscillation (QBO) phases separately, since ozone waves affect the vortex in an opposite manner. Specifically, the emergence of a midlatitude QBO signal is delayed by 1–2 months when radiative ozone-wave effects are removed. The influence of ozone waves on the winter polar vortex, via their modulation of shortwave heating, is not obvious, given that shortwave heating is largest during fall, when planetary stratospheric waves are weakest. Using a novel diagnostic of wave 1 temperature amplitude tendencies and a synoptic analysis of upward planetary wave pulses, we are able to show the chain of events that lead from a direct radiative effect on weak early fall upward-propagating planetary waves to a winter polar vortex modulation. We show that an important stage of this amplification is the modulation of individual wave life cycles, which accumulate during fall and early winter, before being amplified by wave–mean flow feedbacks. We find that the evolution of these early winter upward planetary wave pulses and their induced stratospheric zonal mean flow deceleration is qualitatively different between QBO phases, providing a new mechanistic view of the extratropical QBO signal. We further show how these differences result in opposite radiative ozone-wave effects between east and west QBOs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 16 . pp. 12925-12944.
    Publication Date: 2019-02-01
    Description: To understand solar cycle signals on the Earth's surface and identify the physical mechanisms responsible, surface temperature variations from observations as well as climate model data are analyzed to characterize their spatial structure. The solar signal in the annual mean surface temperature is characterized by (i) mid-latitude warming and (ii) no warming in the tropics. The mid-latitude warming during solar maxima in both hemispheres is associated with a downward penetration of zonal mean zonal wind anomalies from the upper stratosphere during late winter. During Northern Hemisphere winter this is manifested in a modulation of the polar-night jet whereas in the Southern Hemisphere the subtropical jet plays the major role. Warming signals are particularly apparent over the Eurasian continent and ocean frontal zones, including a previously reported lagged response over the North Atlantic. In the tropics, local warming occurs over the Indian and central Pacific oceans during high solar activity. However, this warming is counter balanced by cooling over the cold tongue sectors in the southeastern Pacific and the South Atlantic, and results in a very weak zonally averaged tropical mean signal. The cooling in the ocean basins is associated with stronger cross-equatorial winds resulting from a northward shift of the ascending branch of the Hadley circulation during solar maxima. To understand the complex processes involved in the solar signal transfer, results of an idealized middle atmosphere–ocean coupled model experiment on the impact of stratospheric zonal wind changes are compared with solar signals in observations. The model results suggest that both tropical and extra-tropical solar surface signals can result from circulation changes in the upper stratosphere through (i) a downward migration of wave–zonal mean flow interactions and (ii) changes in the stratospheric mean meridional circulation. These experiments support earlier evidence of an indirect solar influence from the stratosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-01
    Description: Changes in incoming solar ultraviolet radiation over the 11-year solar cycle affect stratospheric ozone abundances. It is important to quantify the magnitude, structure, and seasonality of the associated solar-ozone response (SOR) to understand the impact of the 11-year solar cycle on climate. Part 1 of this two-part study uses multiple linear regression analysis to extract the SOR in a number of recently updated satellite ozone datasets covering different periods within the epoch 1970 to 2013. The annual mean SOR in the updated version 7.0 (v7.0) Stratospheric Aerosol and Gas Experiment (SAGE) II number density dataset (1984–2004) is very consistent with that found in the previous v6.2. In contrast, we find a substantial decrease in the magnitude of the SOR in the tropical upper stratosphere in the SAGE II v7.0 mixing ratio dataset (∼ 1 %) compared to the v6.2 (∼ 4 %). This difference is shown to be largely attributable to the change in the independent stratospheric temperature dataset used to convert SAGE II ozone number densities to mixing ratios. Since these temperature records contain substantial uncertainties, we suggest that datasets based on SAGE II number densities are currently most reliable for evaluating the SOR. We further analyse three extended ozone datasets that combine SAGE II v7.0 number densities with more recent GOMOS (Global Ozone Monitoring by Occultation of Stars) or OSIRIS (Optical Spectrograph and Infrared Imager System) measurements. The extended SAGE–OSIRIS dataset (1984–2013) shows a smaller and less statistically significant SOR across much of the tropical upper stratosphere compared to the SAGE II data alone. In contrast, the two SAGE–GOMOS datasets (1984–2011) show SORs that are in closer agreement with the original SAGE II data and therefore appear to provide a more reliable estimate of the SOR. We also analyse the SOR in the recent Solar Backscatter Ultraviolet Instrument (SBUV) Merged Ozone Dataset (SBUVMOD) version 8.6 (VN8.6) (1970–2012) and SBUV Merged Cohesive VN8.6 (1978–2012) datasets and compare them to the previous SBUVMOD VN8.0 (1970–2009). Over their full lengths, the three records generally agree in terms of the broad magnitude and structure of the annual mean SOR. The main difference is that SBUVMOD VN8.6 shows a smaller and less significant SOR in the tropical upper stratosphere and therefore more closely resembles the SAGE II v7.0 mixing ratio data than does the SBUV Merged Cohesive VN8.6, which has a more continuous SOR of ∼ 2 % in this region. The sparse spatial and temporal sampling of limb satellite instruments prohibits the extraction of sub-annual variations in the SOR from SAGE-based datasets. However, the SBUVMOD VN8.6 dataset suggests substantial month-to-month variations in the SOR, particularly in the winter extratropics, which may be important for the proposed high-latitude dynamical response to the solar cycle. Overall, the results highlight substantial uncertainties in the magnitude and structure of the observed SOR from different satellite records. The implications of these uncertainties for understanding and modelling the effects of solar variability on climate should be explored.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Royal Meteorological Society
    In:  Quarterly Journal of the Royal Meteorological Society, 142 (Part B). pp. 928-941.
    Publication Date: 2019-02-01
    Description: The surface response to the 11-yr solar cycle is assessed in ensemble simulations of the 20th century climate performed in the framework of the 5th phase of the Coupled Model Inter-Comparison Project (CMIP5). A lead/lag multiple linear regression analysis identifies a multi-model mean (MMM) global mean surface warming of about 0.07 K lagging the solar cycle by one to two years on average. The anomalous warming penetrates to approximately the first 80–100 m depth in the ocean. Solar signals in the troposphere show a similar time lag of one to two years and the strongest MMM warming is simulated in the tropics above 300 hPa. At the surface, the MMM response in a subset of models that show statistically significant global mean warming (CMIP5-SIG95) is characterized by an anomalous warming in the west equatorial Pacific Ocean and the Arctic, at one to two years after solar maximum. The Arctic warming is twice as strong as the global mean response and appears in winter months only. The surface warming in the equatorial Pacific Ocean is related to dynamical/thermodynamical processes. Different increase rates of global mean precipitation and atmospheric water vapor in response to a warmer surface lead to a weaker Walker circulation and anomalous westerly winds over the equatorial Pacific in years following solar maximum. Owing to atmosphere–ocean coupling, the anomalous westerly winds cool the subsurface and warm the surface in the western equatorial Pacific by ∼ 0.14 K. The CMIP5-SIG95 MMM surface warming in the equatorial Pacific and Arctic is weak but qualitatively similar compared to solar signals in the HadCRUT4 dataset.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Royal Meteorological Society
    In:  Quarterly Journal of the Royal Meteorological Society, 141 (692). pp. 2670-2689.
    Publication Date: 2017-12-19
    Description: A multiple linear regression statistical method is applied to model data taken from the Coupled Model Intercomparison Project, phase 5 (CMIP-5) to estimate the 11-yr solar cycle responses of stratospheric ozone, temperature, and zonal wind during the 1979-2005 period. The analysis is limited to the six CMIP-5 models that resolve the stratosphere (high-top models) and that include interactive ozone chemistry. All simulations assumed a conservative 11-yr solar spectral irradiance (SSI) variation based on the NRL model. These model responses are then compared to corresponding observational estimates derived from two independent satellite ozone profile data sets and from ERA Interim Reanalysis meteorological data. The models exhibit a range of 11-yr responses with three models (CESM1-WACCM, MIROC-ESM-CHEM, and MRI-ESM1) yielding substantial solar-induced ozone changes in the upper stratosphere that compare favorably with available observations. The remaining three models do not, apparently because of differences in the details of their radiation and photolysis rate codes. During winter in both hemispheres, the three models with stronger upper stratospheric ozone responses produce relatively strong latitudinal gradients of ozone and temperature in the upper stratosphere that are associated with accelerations of the polar night jet under solar maximum conditions. This behavior is similar to that found in the satellite ozone and ERA Interim data except that the latitudinal gradients tend to occur at somewhat higher latitudes in the models. The sharp ozone gradients are dynamical in origin and assist in radiatively enhancing the temperature gradients, leading to a stronger zonal wind response. These results suggest that simulation of a realistic solar-induced variation of upper stratospheric ozone, temperature and zonal wind in winter is possible for at least some coupled climate models even if a conservative SSI variation is adopted.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Royal Meteorological Society
    In:  Quarterly Journal of the Royal Meteorological Society, 141 (691). pp. 2390-2403.
    Publication Date: 2017-12-19
    Description: The 11-year solar cycle component of climate variability is assessed in the historical simulations of models taken from the Coupled Model Inter-comparison Project, phase 5 (CMIP-5). Multiple linear regression is applied to estimate the zonal-temperature, −wind and annular mode responses to a typical solar cycle, with a focus on both the stratosphere and the stratospheric influence on the surface over the period ∼1850-2005. The analysis is performed on all CMIP-5 models, but focuses on the 13 CMIP-5 models that resolve the stratosphere (high-top models), and compares the simulated solar cycle signature with reanalyses data. The 11-year solar cycle component of climate variability is found to be weaker in terms of magnitude and latitudinal gradient around the stratopause in the models than in reanalysis. The peak in temperature in the lower equatorial stratosphere (∼70 hPa) reported in some studies is found in the models to depend on the length of the analysis period, with the last 30 years yielding the strongest response. A modification of the Polar Jet Oscillation (PJO) in response to the 11-year solar cycle is not robust across all models, but is more apparent in models with high spectral resolution in the shortwave. The PJO evolution is slower in the models, leading to a stronger response during February, whereas observations indicate it to be weaker. In early winter, the magnitudes of the modelled response is more consistent with observations when only data from 1979–2005 is considered. The observed North Pacific high-pressure surface response during solar maximum is only simulated in some models, of which there are no distinguishing model characteristics. The lagged North Atlantic surface response is reproduced in both high- and low-top models, but is more prevalent in the former. In both cases, the magnitude of the response is generally lower than in observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 17 . pp. 4093-4114.
    Publication Date: 2020-02-06
    Description: This study aims to quantify how much of the extratropical Tropopause Inversion Layer (TIL) comes from the modulation by planetary and synoptic-scale waves. By analyzing high-resolution observations, it also puts other TIL enhancing mechanisms into context. Using gridded COSMIC GPS-RO temperature profiles from 2007–2013 we are able to extract the extratropical wave signal by a simplified wavenumber-frequency domain filtering method, and to quantify the resulting TIL enhancement. By subtracting the extratropical wave signal, we show how much of the TIL is associated with other processes, at mid and high latitudes, for both Hemispheres and all seasons. The instantaneous modulation by planetary and synoptic-scale waves is almost entirely responsible for the TIL in mid-latitudes. This means that wave-mean flow interactions, inertia-gravity waves or the residual circulation are of minor importance in mid-latitudes. At polar regions, the extratropical wave modulation is dominant for the TIL strength as well, but there is also a clear fingerprint from sudden stratospheric warmings (SSWs) and final warmings in both hemispheres. Therefore, polar vortex breakups are partially responsible for the observed polar TIL strength in winter (if SSWs occur) and spring. Also, part of the polar summer TIL strength cannot be explained by extratropical wave modulation. After many modelling studies that proposed different TIL enhancing mechanisms in the last decade, our study finally identifies which processes dominate the extratropical TIL strength and their relative contribution, by analyzing observations only. It remains to be determined, however, which roles the different planetary and synoptic-scale wave types play within the total extratropical wave modulation of the TIL; and what causes the observed amplification of extratropical waves near the tropopause.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-06
    Description: This paper describes the recommended solar forcing dataset for CMIP6 and highlights changes with respect to CMIP5. The solar forcing is provided for radiative properties, namely total solar irradiance (TSI), solar spectral irradiance (SSI), and the F10.7 index as well as particle forcing, including geomagnetic indices Ap and Kp, and ionization rates to account for effects of solar protons, electrons, and galactic cosmic rays. This is the first time that a recommendation for solar-driven particle forcing has been provided for a CMIP exercise. The solar forcing datasets are provided at daily and monthly resolution separately for the CMIP6 preindustrial control, historical (1850–2014), and future (2015–2300) simulations. For the preindustrial control simulation, both constant and time-varying solar forcing components are provided, with the latter including variability on 11-year and shorter timescales but no long-term changes. For the future, we provide a realistic scenario of what solar behavior could be, as well as an additional extreme Maunder-minimum-like sensitivity scenario. This paper describes the forcing datasets and also provides detailed recommendations as to their implementation in current climate models. For the historical simulations, the TSI and SSI time series are defined as the average of two solar irradiance models that are adapted to CMIP6 needs: an empirical one (NRLTSI2–NRLSSI2) and a semi-empirical one (SATIRE). A new and lower TSI value is recommended: the contemporary solar-cycle average is now 1361.0 W m−2. The slight negative trend in TSI over the three most recent solar cycles in the CMIP6 dataset leads to only a small global radiative forcing of −0.04 W m−2. In the 200–400 nm wavelength range, which is important for ozone photochemistry, the CMIP6 solar forcing dataset shows a larger solar-cycle variability contribution to TSI than in CMIP5 (50 % compared to 35 %). We compare the climatic effects of the CMIP6 solar forcing dataset to its CMIP5 predecessor by using time-slice experiments of two chemistry–climate models and a reference radiative transfer model. The differences in the long-term mean SSI in the CMIP6 dataset, compared to CMIP5, impact on climatological stratospheric conditions (lower shortwave heating rates of −0.35 K day−1 at the stratopause), cooler stratospheric temperatures (−1.5 K in the upper stratosphere), lower ozone abundances in the lower stratosphere (−3 %), and higher ozone abundances (+1.5 % in the upper stratosphere and lower mesosphere). Between the maximum and minimum phases of the 11-year solar cycle, there is an increase in shortwave heating rates (+0.2 K day−1 at the stratopause), temperatures ( ∼  1 K at the stratopause), and ozone (+2.5 % in the upper stratosphere) in the tropical upper stratosphere using the CMIP6 forcing dataset. This solar-cycle response is slightly larger, but not statistically significantly different from that for the CMIP5 forcing dataset. CMIP6 models with a well-resolved shortwave radiation scheme are encouraged to prescribe SSI changes and include solar-induced stratospheric ozone variations, in order to better represent solar climate variability compared to models that only prescribe TSI and/or exclude the solar-ozone response. We show that monthly-mean solar-induced ozone variations are implicitly included in the SPARC/CCMI CMIP6 Ozone Database for historical simulations, which is derived from transient chemistry–climate model simulations and has been developed for climate models that do not calculate ozone interactively. CMIP6 models without chemistry that perform a preindustrial control simulation with time-varying solar forcing will need to use a modified version of the SPARC/CCMI Ozone Database that includes solar variability. CMIP6 models with interactive chemistry are also encouraged to use the particle forcing datasets, which will allow the potential long-term effects of particles to be addressed for the first time. The consideration of particle forcing has been shown to significantly improve the representation of reactive nitrogen and ozone variability in the polar middle atmosphere, eventually resulting in further improvements in the representation of solar climate variability in global models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: It is well established that variable wintertime planetary wave forcing in the stratosphere controls the variability of Arctic stratospheric ozone through changes in the strength of the polar vortex and the residual circulation. While previous studies focused on the variations in upward wave flux entering the lower stratosphere, here the impact of downward planetary wave reflection on ozone is investigated for the first time. Utilizing the MERRA2 reanalysis and a fully coupled chemistry–climate simulation with the Community Earth System Model (CESM1(WACCM)) of the National Center for Atmospheric Research (NCAR), we find two downward wave reflection effects on ozone: (1) the direct effect in which the residual circulation is weakened during winter, reducing the typical increase of ozone due to upward planetary wave events and (2) the indirect effect in which the modification of polar temperature during winter affects the amount of ozone destruction in spring. Winter seasons dominated by downward wave reflection events (i.e., reflective winters) are characterized by lower Arctic ozone concentration, while seasons dominated by increased upward wave events (i.e., absorptive winters) are characterized by relatively higher ozone concentration. This behavior is consistent with the cumulative effects of downward and upward planetary wave events on polar stratospheric ozone via the residual circulation and the polar temperature in winter. The results establish a new perspective on dynamical processes controlling stratospheric ozone variability in the Arctic by highlighting the key role of wave reflection.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...