ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus GmbH  (2)
  • Frontiers Media SA  (1)
  • 2020-2024  (3)
Collection
Years
  • 2020-2024  (3)
Year
  • 1
    Publication Date: 2023-06-23
    Description: Antarctic sea ice prediction has garnered increasing attention in recent years, particularly in the context of the recent record lows of February 2022 and 2023. As Antarctica becomes a climate change hotspot, as polar tourism booms, and as scientific expeditions continue to explore this remote continent, the capacity to anticipate sea ice conditions weeks to months in advance is in increasing demand. Spurred by recent studies that uncovered physical mechanisms of Antarctic sea ice predictability and by the intriguing large variations of the observed sea ice extent in recent years, the Sea Ice Prediction Network South (SIPN South) project was initiated in 2017, building upon the Arctic Sea Ice Prediction Network. The SIPN South project annually coordinates spring-to-summer predictions of Antarctic sea ice conditions, to allow robust evaluation and intercomparison, and to guide future development in polar prediction systems. In this paper, we present and discuss the initial SIPN South results collected over six summer seasons (December-February 2017-2018 to 2022-2023). We use data from 22 unique contributors spanning five continents that have together delivered more than 3000 individual forecasts of sea ice area and concentration. The SIPN South median forecast of the circumpolar sea ice area captures the sign of the recent negative anomalies, and the verifying observations are systematically included in the 10-90% range of the forecast distribution. These statements also hold at the regional level except in the Ross Sea where the systematic biases and the ensemble spread are the largest. A notable finding is that the group forecast, constructed by aggregating the data provided by each contributor, outperforms most of the individual forecasts, both at the circumpolar and regional levels. This indicates the value of combining predictions to average out model-specific errors. Finally, we find that dynamical model predictions (i.e., based on process-based general circulation models) generally perform worse than statistical model predictions (i.e., data-driven empirical models including machine learning) in representing the regional variability of sea ice concentration in summer. SIPN South is a collaborative community project that is hosted on a shared public repository. The forecast and verification data used in SIPN South are publicly available in near-real time for further use by the polar research community, and eventually, policymakers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-21
    Description: 〈jats:p〉Abstract. We developed a new version of the Alfred Wegener Institute Climate Model (AWI-CM3), which has higher skills in representing the observed climatology and better computational efficiency than its predecessors. Its ocean component FESOM2 (Finite-volumE Sea ice–Ocean Model) has the multi-resolution functionality typical of unstructured-mesh models while still featuring a scalability and efficiency similar to regular-grid models. The atmospheric component OpenIFS (CY43R3) enables the use of the latest developments in the numerical-weather-prediction community in climate sciences. In this paper we describe the coupling of the model components and evaluate the model performance on a variable-resolution (25–125 km) ocean mesh and a 61 km atmosphere grid, which serves as a reference and starting point for other ongoing research activities with AWI-CM3. This includes the exploration of high and variable resolution and the development of a full Earth system model as well as the creation of a new sea ice prediction system. At this early development stage and with the given coarse to medium resolutions, the model already features above-CMIP6-average skills (where CMIP6 denotes Coupled Model Intercomparison Project phase 6) in representing the climatology and competitive model throughput. Finally we identify remaining biases and suggest further improvements to be made to the model. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus GmbH
    In:  EPIC3The Cryosphere, Copernicus GmbH, 16(7), pp. 2927-2946, ISSN: 1994-0416
    Publication Date: 2024-01-31
    Description: 〈jats:p〉Abstract. Skillful sea ice drift forecasts are crucial for scientific mission planning and marine safety. Wind is the dominant driver of ice motion variability, but more slowly varying components of the climate system, in particular ice thickness and ocean currents, bear the potential to render ice drift more predictable than the wind. In this study, we provide the first assessment of Arctic sea ice drift predictability in four coupled general circulation models (GCMs), using a suite of “perfect-model” ensemble simulations. We find the position vector from Lagrangian trajectories of virtual buoys to remain predictable for at least a 90 (45) d lead time for initializations in January (July), reaching about 80 % of the position uncertainty of a climatological reference forecast. In contrast, the uncertainty in Eulerian drift vector predictions reaches the level of the climatological uncertainty within 4 weeks. Spatial patterns of uncertainty, varying with season and across models, develop in all investigated GCMs. For two models providing near-surface wind data (AWI-CM1 and HadGEM1.2), we find spatial patterns and large fractions of the variance to be explained by wind vector uncertainty. The latter implies that sea ice drift is only marginally more predictable than wind. Nevertheless, particularly one of the four models (GFDL-CM3) shows a significant correlation of up to −0.85 between initial ice thickness and target position uncertainty in large parts of the Arctic. Our results provide a first assessment of the inherent predictability of ice motion in coupled climate models; they can be used to put current real-world forecast skill into perspective and highlight the model diversity of sea ice drift predictability. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...