ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (51)
  • 1965-1969  (469)
Collection
Language
Years
Year
  • 1
    Series available for loan
    Series available for loan
    Washington, DC : United States Gov. Print. Off.
    Associated volumes
    Call number: SR 90.0001(1250)
    In: U.S. Geological Survey bulletin
    Type of Medium: Series available for loan
    Pages: III, 69 S.
    Edition: 4th ed.
    Series Statement: U.S. Geological Survey bulletin 1250
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-12
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In-situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. Therefore, we here provide four datasets comprising: 1. Harmonized, standardized and aggregated in situ observations of SEB components at 64 vegetated and glaciated sites north of 60° latitude, in the time period 1994-2021 2. A description of all study sites and associated environmental conditions, including the vegetation types, which correspond to the classification of the Circumpolar Arctic Vegetation Map (CAVM, Raynolds et al. 2019). 3. Data generated in a literature synthesis from 358 study sites on vegetation or glacier (〉=60°N latitude) covered by 148 publications. 4. Metadata, including data contributor information and measurement heights of variables associated with Oehri et al. 2022.
    Keywords: Arctic; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; dry tundra; Eddy covariance; eddy heat flux; glacier; graminoids; ground heat flux and net radiation; harmonized data; high latitude; Land-Atmosphere; Land-cover; latent and sensible heat; latent heat flux; longwave radiation; meteorological data; observatory data; Peat bog; Radiation fluxes; Radiative energy budget; sensible heat flux; shortwave radiation; shrub tundra; surface energy balance; synthetic data; tundra vegetation; wetland
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-05
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset describes the environmental conditions for 64 tundra and glacier sites (〉=60°N latitude) across the Arctic, for which in situ measurements of surface energy budget components were harmonized (see Oehri et al. 2022). These environmental conditions are (proxies of) potential drivers of SEB-components and could therefore be called SEB-drivers. The associated environmental conditions, include the vegetation types graminoid tundra, prostrate dwarf-shrub tundra, erect-shrub tundra, wetland complexes, barren complexes (≤ 40% horizontal plant cover), boreal peat bogs and glacier. These land surface types (apart from boreal peat bogs) correspond to the main classification units of the Circumpolar Arctic Vegetation Map (CAVM, Raynolds et al. 2019). For each site, additional climatic and biophysical variables are available, including cloud cover, snow cover duration, permafrost characteristics, climatic conditions and topographic conditions.
    Keywords: Arctic; Arctic_SEB_CA-SCB; Arctic_SEB_CP1; Arctic_SEB_Dye-2; Arctic_SEB_EGP; Arctic_SEB_FI-Lom; Arctic_SEB_GL-NuF; Arctic_SEB_GL-ZaF; Arctic_SEB_GL-ZaH; Arctic_SEB_KAN_B; Arctic_SEB_KAN_L; Arctic_SEB_KAN_M; Arctic_SEB_KAN_U; Arctic_SEB_KPC_L; Arctic_SEB_KPC_U; Arctic_SEB_MIT; Arctic_SEB_NASA-E; Arctic_SEB_NASA-SE; Arctic_SEB_NASA-U; Arctic_SEB_NUK_K; Arctic_SEB_NUK_L; Arctic_SEB_NUK_N; Arctic_SEB_NUK_U; Arctic_SEB_QAS_A; Arctic_SEB_QAS_L; Arctic_SEB_QAS_M; Arctic_SEB_QAS_U; Arctic_SEB_RU-Che; Arctic_SEB_RU-Cok; Arctic_SEB_RU-Sam; Arctic_SEB_RU-Tks; Arctic_SEB_RU-Vrk; Arctic_SEB_Saddle; Arctic_SEB_SCO_L; Arctic_SEB_SCO_U; Arctic_SEB_SE-St1; Arctic_SEB_SJ-Adv; Arctic_SEB_SJ-Blv; Arctic_SEB_SouthDome; Arctic_SEB_Summit; Arctic_SEB_TAS_A; Arctic_SEB_TAS_L; Arctic_SEB_TAS_U; Arctic_SEB_THU_L; Arctic_SEB_THU_U; Arctic_SEB_Tunu-N; Arctic_SEB_UPE_L; Arctic_SEB_UPE_U; Arctic_SEB_US-A03; Arctic_SEB_US-A10; Arctic_SEB_US-An1; Arctic_SEB_US-An2; Arctic_SEB_US-An3; Arctic_SEB_US-Atq; Arctic_SEB_US-Brw; Arctic_SEB_US-EML; Arctic_SEB_US-HVa; Arctic_SEB_US-ICh; Arctic_SEB_US-ICs; Arctic_SEB_US-ICt; Arctic_SEB_US-Ivo; Arctic_SEB_US-NGB; Arctic_SEB_US-Upa; Arctic_SEB_US-xHE; Arctic_SEB_US-xTL; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; Aspect; Aspect, coefficient of variation; Calculated average/mean values; Cloud cover; Cloud cover, standard deviation; Cloud top pressure; Cloud top pressure, standard deviation; Cloud top temperature; Cloud top temperature, standard deviation; Conrad's continentality index; Daily maximum; Daily mean; Data source; Date/Time of event; dry tundra; Eddy covariance; eddy heat flux; ELEVATION; Elevation, standard deviation; Event label; Field observation; glacier; graminoids; ground heat flux and net radiation; harmonized data; high latitude; Humidity, relative; Land-Atmosphere; Land-cover; Land cover classes; Land cover type; latent and sensible heat; latent heat flux; LATITUDE; Location ID; LONGITUDE; longwave radiation; Mean values; Median values; meteorological data; Number of vegetation types; observatory data; Peat bog; Permafrost, type; Permafrost extent; Permafrost ice content, description; Precipitation; Precipitation, coefficient of variation; Precipitation, daily, maximum; Precipitation, snow; Precipitation, sum; Pressure, atmospheric; p-value; Radiation fluxes; Radiative energy budget; Reference/source; sensible heat flux; Shannon Diversity Index; Shannon Diversity Index, maximum; shortwave radiation; shrub tundra; Site; Slope; Slope, coefficient of variation; Slope, mathematical; Snow, onset, day of the year; Snow cover, number of days; Snowfall, coefficient of variation; Snow-free days; Snow type; Soil water content, volumetric; Species present; Summer warmth index; surface energy balance; synthetic data; Temperature, air, annual mean; Temperature, air, coefficient of variation; Temperature, annual mean range; tundra vegetation; Type of study; Uniform resource locator/link to reference; Vapour pressure deficit; Vegetation type; wetland; Wind speed; Zone
    Type: Dataset
    Format: text/tab-separated-values, 4705 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-12
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset contains metadata information about surface energy budget components measured at 64 tundra and glacier sites 〉60° N across the Arctic. This information was taken from the open-access repositories FLUXNET, Ameriflux, AON, GC-Net and PROMICE. The contained datasets are associated with the publication vegetation type as an important predictor of the Arctic Summer Land Surface Energy Budget by Oehri et al. 2022, and intended to support research of surface energy budgets and their relationship with environmental conditions, in particular vegetation characteristics across the terrestrial Arctic.
    Keywords: Aggregation type; Arctic; Arctic_SEB_CA-SCB; Arctic_SEB_CP1; Arctic_SEB_Dye-2; Arctic_SEB_EGP; Arctic_SEB_FI-Lom; Arctic_SEB_GL-NuF; Arctic_SEB_GL-ZaF; Arctic_SEB_GL-ZaH; Arctic_SEB_KAN_B; Arctic_SEB_KAN_L; Arctic_SEB_KAN_M; Arctic_SEB_KAN_U; Arctic_SEB_KPC_L; Arctic_SEB_KPC_U; Arctic_SEB_MIT; Arctic_SEB_NASA-E; Arctic_SEB_NASA-SE; Arctic_SEB_NASA-U; Arctic_SEB_NUK_K; Arctic_SEB_NUK_L; Arctic_SEB_NUK_N; Arctic_SEB_NUK_U; Arctic_SEB_QAS_A; Arctic_SEB_QAS_L; Arctic_SEB_QAS_M; Arctic_SEB_QAS_U; Arctic_SEB_RU-Che; Arctic_SEB_RU-Cok; Arctic_SEB_RU-Sam; Arctic_SEB_RU-Tks; Arctic_SEB_RU-Vrk; Arctic_SEB_Saddle; Arctic_SEB_SCO_L; Arctic_SEB_SCO_U; Arctic_SEB_SE-St1; Arctic_SEB_SJ-Adv; Arctic_SEB_SJ-Blv; Arctic_SEB_SouthDome; Arctic_SEB_Summit; Arctic_SEB_TAS_A; Arctic_SEB_TAS_L; Arctic_SEB_TAS_U; Arctic_SEB_THU_L; Arctic_SEB_THU_U; Arctic_SEB_Tunu-N; Arctic_SEB_UPE_L; Arctic_SEB_UPE_U; Arctic_SEB_US-A03; Arctic_SEB_US-A10; Arctic_SEB_US-An1; Arctic_SEB_US-An2; Arctic_SEB_US-An3; Arctic_SEB_US-Atq; Arctic_SEB_US-Brw; Arctic_SEB_US-EML; Arctic_SEB_US-HVa; Arctic_SEB_US-ICh; Arctic_SEB_US-ICs; Arctic_SEB_US-ICt; Arctic_SEB_US-Ivo; Arctic_SEB_US-NGB; Arctic_SEB_US-Upa; Arctic_SEB_US-xHE; Arctic_SEB_US-xTL; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; Author(s); Data source; Date/Time of event; Day of the year; Description; dry tundra; Eddy covariance; eddy heat flux; Event label; Field observation; First year of observation; glacier; graminoids; ground heat flux and net radiation; harmonized data; high latitude; Institution; Instrument; Land-Atmosphere; Land-cover; Last year of observation; latent and sensible heat; latent heat flux; LATITUDE; Location ID; LONGITUDE; longwave radiation; meteorological data; Method comment; observatory data; Peat bog; Radiation fluxes; Radiative energy budget; Sample height; sensible heat flux; shortwave radiation; shrub tundra; surface energy balance; synthetic data; tundra vegetation; Type of study; Unit; Variable; wetland
    Type: Dataset
    Format: text/tab-separated-values, 20562 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-12
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset describes the data generated in a literature synthesis, covering 358 study sites on vegetation or glacier (〉=60°N latitude), which contained surface energy budget observations. The literature synthesis comprised 148 publications searched on the ISI Web of Science Core Collection.
    Keywords: Arctic; Arctic_SEB_1; Arctic_SEB_1951-2009_1; Arctic_SEB_1965-2000_1; Arctic_SEB_1965-2000_2; Arctic_SEB_1965-2000_3; Arctic_SEB_1965-2000_4; Arctic_SEB_1969-2013_1; Arctic_SEB_1970-1972_1; Arctic_SEB_1970-1979_1; Arctic_SEB_1972-2004_1; Arctic_SEB_1972-2004_10; Arctic_SEB_1972-2004_11; Arctic_SEB_1972-2004_2; Arctic_SEB_1972-2004_3; Arctic_SEB_1972-2004_4; Arctic_SEB_1972-2004_5; Arctic_SEB_1972-2004_6; Arctic_SEB_1972-2004_7; Arctic_SEB_1972-2004_8; Arctic_SEB_1972-2004_9; Arctic_SEB_1979-1995_1; Arctic_SEB_1979-1995_2; Arctic_SEB_1979-1995_3; Arctic_SEB_1979-1995_4; Arctic_SEB_1979-2005_1; Arctic_SEB_1980-1981_1; Arctic_SEB_1981-1997_1; Arctic_SEB_1981-1997_2; Arctic_SEB_1983-2005_1; Arctic_SEB_1983-2005_2; Arctic_SEB_1983-2005_3; Arctic_SEB_1984-1991_1; Arctic_SEB_1985-1989_1; Arctic_SEB_1985-2016_1; Arctic_SEB_1988-1988_1; Arctic_SEB_1988-1988_2; Arctic_SEB_1988-1988_3; Arctic_SEB_1988-1988_4; Arctic_SEB_1988-1988_5; Arctic_SEB_1989-1990_1; Arctic_SEB_1990-1991_1; Arctic_SEB_1991-1991_1; Arctic_SEB_1991-1999_1; Arctic_SEB_1991-1999_2; Arctic_SEB_1991-1999_3; Arctic_SEB_1992-1992_1; Arctic_SEB_1992-1997_1; Arctic_SEB_1994-1994_1; Arctic_SEB_1994-1994_2; Arctic_SEB_1994-1994_3; Arctic_SEB_1994-1994_4; Arctic_SEB_1994-1996_1; Arctic_SEB_1994-1996_10; Arctic_SEB_1994-1996_11; Arctic_SEB_1994-1996_12; Arctic_SEB_1994-1996_13; Arctic_SEB_1994-1996_14; Arctic_SEB_1994-1996_15; Arctic_SEB_1994-1996_16; Arctic_SEB_1994-1996_17; Arctic_SEB_1994-1996_2; Arctic_SEB_1994-1996_3; Arctic_SEB_1994-1996_4; Arctic_SEB_1994-1996_5; Arctic_SEB_1994-1996_6; Arctic_SEB_1994-1996_7; Arctic_SEB_1994-1996_8; Arctic_SEB_1994-1996_9; Arctic_SEB_1994-2008_1; Arctic_SEB_1994-2008_2; Arctic_SEB_1994-2009_1; Arctic_SEB_1994-2015_1; Arctic_SEB_1994-2015_2; Arctic_SEB_1994-2015_3; Arctic_SEB_1994-2015_4; Arctic_SEB_1994-2015_5; Arctic_SEB_1994-2015_6; Arctic_SEB_1995-1995_1; Arctic_SEB_1995-1995_2; Arctic_SEB_1995-1996_1; Arctic_SEB_1995-1997_1; Arctic_SEB_1995-1997_2; Arctic_SEB_1995-1997_3; Arctic_SEB_1995-1997_4; Arctic_SEB_1995-1998_1; Arctic_SEB_1995-1999_1; Arctic_SEB_1996-1997_1; Arctic_SEB_1996-1999_1; Arctic_SEB_1996-2005_1; Arctic_SEB_1996-2005_2; Arctic_SEB_1996-2005_3; Arctic_SEB_1997-1998_1; Arctic_SEB_1997-1999_1; Arctic_SEB_1997-2018_1; Arctic_SEB_1997-2018_10; Arctic_SEB_1997-2018_11; Arctic_SEB_1997-2018_12; Arctic_SEB_1997-2018_13; Arctic_SEB_1997-2018_14; Arctic_SEB_1997-2018_15; Arctic_SEB_1997-2018_16; Arctic_SEB_1997-2018_17; Arctic_SEB_1997-2018_18; Arctic_SEB_1997-2018_19; Arctic_SEB_1997-2018_2; Arctic_SEB_1997-2018_20; Arctic_SEB_1997-2018_21; Arctic_SEB_1997-2018_22; Arctic_SEB_1997-2018_23; Arctic_SEB_1997-2018_24; Arctic_SEB_1997-2018_25; Arctic_SEB_1997-2018_3; Arctic_SEB_1997-2018_4; Arctic_SEB_1997-2018_5; Arctic_SEB_1997-2018_6; Arctic_SEB_1997-2018_7; Arctic_SEB_1997-2018_8; Arctic_SEB_1997-2018_9; Arctic_SEB_1998-1998_1; Arctic_SEB_1998-1999_1; Arctic_SEB_1998-2000_1; Arctic_SEB_1998-2001_1; Arctic_SEB_1998-2005_1; Arctic_SEB_1998-2011_1; Arctic_SEB_1998-2011_2; Arctic_SEB_1998-2011_3; Arctic_SEB_1998-2013_1; Arctic_SEB_1999-1999_1; Arctic_SEB_1999-2000_1; Arctic_SEB_1999-2008_1; Arctic_SEB_1999-2008_2; Arctic_SEB_1999-2009_1; Arctic_SEB_1999-2014_1; Arctic_SEB_2000-2000_1; Arctic_SEB_2000-2000_2; Arctic_SEB_2000-2000_3; Arctic_SEB_2000-2000_4; Arctic_SEB_2000-2002_1; Arctic_SEB_2000-2002_2; Arctic_SEB_2000-2002_3; Arctic_SEB_2000-2003_1; Arctic_SEB_2000-2003_2; Arctic_SEB_2000-2003_3; Arctic_SEB_2000-2007_1; Arctic_SEB_2000-2007_2; Arctic_SEB_2000-2007_3; Arctic_SEB_2000-2007_4; Arctic_SEB_2000-2008_1; Arctic_SEB_2000-2010_1; Arctic_SEB_2000-2011_1; Arctic_SEB_2000-2011_10; Arctic_SEB_2000-2011_11; Arctic_SEB_2000-2011_2; Arctic_SEB_2000-2011_3; Arctic_SEB_2000-2011_4; Arctic_SEB_2000-2011_5; Arctic_SEB_2000-2011_6; Arctic_SEB_2000-2011_7; Arctic_SEB_2000-2011_8; Arctic_SEB_2000-2011_9; Arctic_SEB_2000-2014_1; Arctic_SEB_2001-2003_1; Arctic_SEB_2002-2002_1; Arctic_SEB_2002-2003_1; Arctic_SEB_2002-2003_2; Arctic_SEB_2002-2004_1; Arctic_SEB_2002-2010_1; Arctic_SEB_2002-2012_1; Arctic_SEB_2002-2012_2; Arctic_SEB_2002-2012_3; Arctic_SEB_2003-2003_1; Arctic_SEB_2003-2004_1; Arctic_SEB_2003-2007_1; Arctic_SEB_2003-2008_1; Arctic_SEB_2003-2008_2; Arctic_SEB_2003-2010_1; Arctic_SEB_2003-2010_2; Arctic_SEB_2003-2010_3; Arctic_SEB_2003-2011_1; Arctic_SEB_2004-2004_1; Arctic_SEB_2004-2006_1; Arctic_SEB_2004-2013_1; Arctic_SEB_2005-2005_1; Arctic_SEB_2006-2006_1; Arctic_SEB_2006-2006_2; Arctic_SEB_2006-2007_1; Arctic_SEB_2006-2007_10; Arctic_SEB_2006-2007_11; Arctic_SEB_2006-2007_12; Arctic_SEB_2006-2007_13; Arctic_SEB_2006-2007_14; Arctic_SEB_2006-2007_2; Arctic_SEB_2006-2007_3; Arctic_SEB_2006-2007_4; Arctic_SEB_2006-2007_5; Arctic_SEB_2006-2007_6; Arctic_SEB_2006-2007_7; Arctic_SEB_2006-2007_8; Arctic_SEB_2006-2007_9; Arctic_SEB_2006-2008_1; Arctic_SEB_2006-2008_2; Arctic_SEB_2006-2009_1; Arctic_SEB_2007-2007_1; Arctic_SEB_2007-2008_1; Arctic_SEB_2007-2009_1; Arctic_SEB_2007-2009_2; Arctic_SEB_2007-2010_1; Arctic_SEB_2007-2014_1; Arctic_SEB_2007-2015_1; Arctic_SEB_2007-2015_2; Arctic_SEB_2008-2008_1; Arctic_SEB_2008-2008_2; Arctic_SEB_2008-2008_3; Arctic_SEB_2008-2009_1; Arctic_SEB_2008-2010_1; Arctic_SEB_2008-2010_2; Arctic_SEB_2008-2010_3; Arctic_SEB_2008-2011_1; Arctic_SEB_2008-2012_1; Arctic_SEB_2008-2012_2; Arctic_SEB_2008-2012_3; Arctic_SEB_2009-2012_1; Arctic_SEB_2009-2012_2; Arctic_SEB_2009-2012_3; Arctic_SEB_2009-2012_4; Arctic_SEB_2009-2012_5; Arctic_SEB_2009-2014_1; Arctic_SEB_2009-2014_2; Arctic_SEB_2010-2014_1; Arctic_SEB_2010-2014_2; Arctic_SEB_2010-2014_3; Arctic_SEB_2010-2014_4; Arctic_SEB_2010-2014_5; Arctic_SEB_2011-2011_1; Arctic_SEB_2011-2013_1; Arctic_SEB_2011-2014_1; Arctic_SEB_2012-2012_1; Arctic_SEB_2012-2013_1; Arctic_SEB_2012-2013_2; Arctic_SEB_2012-2013_3; Arctic_SEB_2012-2013_4; Arctic_SEB_2012-2014_1; Arctic_SEB_2012-2015_1; Arctic_SEB_2012-2015_2; Arctic_SEB_2012-2015_3; Arctic_SEB_2012-2015_4; Arctic_SEB_2012-2015_5; Arctic_SEB_2013-2013_1; Arctic_SEB_2013-2014_1; Arctic_SEB_2013-2015_1; Arctic_SEB_2013-2015_2; Arctic_SEB_2013-2015_3; Arctic_SEB_2014-2014_1; Arctic_SEB_2014-2015_1; Arctic_SEB_2014-2016_1; Arctic_SEB_2015-2015_1; Arctic_SEB_2015-2015_2; Arctic_SEB_2015-2015_3; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; Author(s); Classification; Comment; Data collection methodology; Data type; Date/Time of event; dry tundra; Eddy covariance; eddy heat flux; ELEVATION; Energy budget, description; Event label; Field observation; First year of observation; glacier; glaciers; graminoids; ground heat flux and net radiation; harmonized data; high latitude; Identification; Journal/report title; Land-Atmosphere; Land-cover; Last year of observation; latent and sensible heat; latent heat flux; LATITUDE; Location; LONGITUDE; longwave radiation; meteorological data; observatory data; Peat bog; Persistent Identifier; Publication type; Radiation fluxes; Radiative energy budget; Resolution; Season; sensible heat flux; shortwave radiation; shrub tundra; Spatial coverage; surface energy balance; synthetic data; Title; tundra vegetation; Type of study; Variable; Vegetation type; wetland; wetlands; Year of publication
    Type: Dataset
    Format: text/tab-separated-values, 8650 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-12
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset comprises harmonized, standardized and aggregated in-situ observations of surface energy budget components measured at 64 sites on vegetated and glaciated sites north of 60° latitude, in the time period from 1994 till 2021. The surface energy budget components include net radiation, sensible heat flux, latent heat flux, ground heat flux, net shortwave radiation, net longwave radiation, surface temperature and albedo, which were aggregated to daily mean, minimum and maximum values from hourly and half-hourly measurements. Data were retrieved from the monitoring networks FLUXNET, AmeriFlux, AON, GC-Net and PROMICE.
    Keywords: Albedo; Albedo, maximum; Albedo, minimum; Arctic; Arctic_SEB_CA-SCB; Arctic_SEB_CP1; Arctic_SEB_Dye-2; Arctic_SEB_EGP; Arctic_SEB_FI-Lom; Arctic_SEB_GL-NuF; Arctic_SEB_GL-ZaF; Arctic_SEB_GL-ZaH; Arctic_SEB_KAN_B; Arctic_SEB_KAN_L; Arctic_SEB_KAN_M; Arctic_SEB_KAN_U; Arctic_SEB_KPC_L; Arctic_SEB_KPC_U; Arctic_SEB_MIT; Arctic_SEB_NASA-E; Arctic_SEB_NASA-SE; Arctic_SEB_NASA-U; Arctic_SEB_NUK_K; Arctic_SEB_NUK_L; Arctic_SEB_NUK_N; Arctic_SEB_NUK_U; Arctic_SEB_QAS_A; Arctic_SEB_QAS_L; Arctic_SEB_QAS_M; Arctic_SEB_QAS_U; Arctic_SEB_RU-Che; Arctic_SEB_RU-Cok; Arctic_SEB_RU-Sam; Arctic_SEB_RU-Tks; Arctic_SEB_RU-Vrk; Arctic_SEB_Saddle; Arctic_SEB_SCO_L; Arctic_SEB_SCO_U; Arctic_SEB_SE-St1; Arctic_SEB_SJ-Adv; Arctic_SEB_SJ-Blv; Arctic_SEB_SouthDome; Arctic_SEB_Summit; Arctic_SEB_TAS_A; Arctic_SEB_TAS_L; Arctic_SEB_TAS_U; Arctic_SEB_THU_L; Arctic_SEB_THU_U; Arctic_SEB_Tunu-N; Arctic_SEB_UPE_L; Arctic_SEB_UPE_U; Arctic_SEB_US-A03; Arctic_SEB_US-A10; Arctic_SEB_US-An1; Arctic_SEB_US-An2; Arctic_SEB_US-An3; Arctic_SEB_US-Atq; Arctic_SEB_US-Brw; Arctic_SEB_US-EML; Arctic_SEB_US-HVa; Arctic_SEB_US-ICh; Arctic_SEB_US-ICs; Arctic_SEB_US-ICt; Arctic_SEB_US-Ivo; Arctic_SEB_US-NGB; Arctic_SEB_US-Upa; Arctic_SEB_US-xHE; Arctic_SEB_US-xTL; ArcticTundraSEB; Arctic Tundra Surface Energy Budget; Bowen ratio; Calculated from Ground heat, flux / Net radiation; Calculated from Heat, flux, latent / Net radiation; Calculated from Heat, flux, sensible / Heat, flux, latent; Calculated from Heat, flux, sensible / Net radiation; Calculated from Heat, flux, sensible + Heat, flux, latent + Ground heat, flux; Calculated from Long-wave downward radiation, maximum - Long-wave upward radiation, maximum; Calculated from Long-wave downward radiation, minimum - Long-wave upward radiation, minimum; Calculated from Long-wave downward radiation - Long-wave upward radiation; Calculated from Long-wave net radiation / Net radiation; Calculated from Short-wave downward (GLOBAL) radiation, maximum - Short-wave upward (REFLEX) radiation, maximum; Calculated from Short-wave downward (GLOBAL) radiation, minimum - Short-wave upward (REFLEX) radiation, minimum; Calculated from Short-wave downward (GLOBAL) radiation - Short-wave upward (REFLEX) radiation; Calculated from Short-wave net radiation, maximum + Long-wave net radiation, maximum; Calculated from Short-wave net radiation, minimum + Long-wave net radiation, minimum; Calculated from Short-wave net radiation / Net radiation; Calculated from Short-wave net radiation + Long-wave net radiation; Calculated from Short-wave upward (REFLEX) radiation / Short-wave downward (GLOBAL) radiation; Calculated from Surface temperature, maximum - Temperature, air, maximum; Calculated from Surface temperature, minimum - Temperature, air, minimum; Calculated from Surface temperature - Temperature, air; Cloud coverage; Cloud coverage, maximum; Cloud coverage, minimum; Daily maximum; Daily mean; Daily minimum; Data source; DATE/TIME; Day of the year; dry tundra; Eddy covariance; eddy heat flux; ELEVATION; Event label; Field observation; glacier; graminoids; Ground heat, flux; Ground heat, flux, maximum; Ground heat, flux, minimum; Ground heat, flux/Net radiation ratio; ground heat flux and net radiation; harmonized data; Heat, flux, latent; Heat, flux, latent, maximum; Heat, flux, latent, minimum; Heat, flux, latent/Net radiation ratio; Heat, flux, sensible; Heat, flux, sensible, maximum; Heat, flux, sensible, minimum; Heat flux, sensible/Net radiation ratio; high latitude; Humidity, relative; Humidity, relative, maximum; Humidity, relative, minimum; Land-Atmosphere; Land-cover; latent and sensible heat; latent heat flux; LATITUDE; Location ID; LONGITUDE; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave net radiation; Long-wave net radiation, maximum; Long-wave net radiation, minimum; Long-wave net radiation/Net radiation ratio; longwave radiation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; meteorological data; Month; Net radiation; Net radiation, maximum; Net radiation, minimum; Normalized by X / Potential incoming solar radiation, maximum * 100; observatory data; Original variable; Peat bog; Potential incoming solar radiation; Potential incoming solar radiation, maximum; Potential incoming solar radiation, minimum; Precipitation; Precipitation, daily, maximum; Precipitation, daily, minimum; Pressure, atmospheric; Pressure, atmospheric, maximum; Pressure, atmospheric, minimum; Radiation fluxes; Radiative energy budget; sensible heat flux; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave net radiation; Short-wave net radiation, maximum; Short-wave net radiation, minimum; Short-wave net radiation/Net radiation ratio; shortwave radiation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; shrub tundra; Soil water content, volumetric; Soil water content, volumetric, maximum; Soil water content, volumetric, minimum; surface energy balance; Surface temperature; Surface temperature, maximum; Surface temperature, minimum; synthetic data; Temperature, air; Temperature, air, maximum; Temperature, air, minimum; Temperature, soil; Temperature, soil, maximum; Temperature, soil, minimum; Temperature gradient, 0-2m above surface; Temperature gradient, 0-2m above surface, maximum; Temperature gradient, 0-2m above surface, minimum; tundra vegetation; Type of study; Vapour pressure deficit; Vapour pressure deficit, maximum; Vapour pressure deficit, minimum; wetland; Wind direction; Wind speed; Wind speed, maximum; Wind speed, minimum; Year of observation
    Type: Dataset
    Format: text/tab-separated-values, 17112737 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Utah State University, University Libraries
    Publication Date: 2024-04-02
    Description: The Navajo nation is one of the most frequently researched groups of Indians in North America. Anthropologists, sociologists, historians, and others have taken turns explaining their views of Navajo history and culture. A recurrent theme throughout is that the U.S. government defeated the Navajos so soundly during the early 1860s that after their return from incarceration at Bosque Redondo, they were a badly shattered and submissive people.The next thirty years saw a marked demographic boom during which the Navajo population doubled. Historians disagree as to the extent of this growth, but the position taken by many historians is that because of this growth and the rapidly expanding herds of sheep, cattle, and horses, the government beneficently gave more territory to its suffering wards.While this interpretation is partly accurate, it centers on the role of the government, the legislation that was passed, and the frustrations of the Indian agents who rotated frequently through the Navajo Agency in Fort Defiance, New Mexico, and ignores or severely limits one of the most important actors in this process of land acquisition-the Navajos themselves. Instead of being a downtrodden group of prisoners, defeated militarily in the 1860s and dependent on the U.S. government for protection and guidance in the 1870s and 80s, they were vigorously involved in defending and expanding the borders of their homelands. This was accomplished not through war and as a concerted effort, but by an aggressive defensive policy built on individual action that varied with changing circumstances. Many Navajos never made the Long Walk to Bosque Redondo. Instead they eluded capture in northern and western hinterlands and thereby pushed out their frontier. This book focuses on the events and activities in one part of the Navajo borderlands-the northern frontier-where between 1860 and 1900 the Navajos were able to secure a large portion of land that is still part of the reservation. This expansion was achieved during a period when most Native Americans were losing their lands.
    Keywords: E11-143 ; thema EDItEUR::N History and Archaeology::NH History::NHK History of the Americas
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-08
    Description: This book presents Robert S. Hartman’s formal theory of value and critically examines many other twentieth century value theorists in its light, including A.J. Ayer, Kurt Baier, Brand Blanshard, Paul Edwards, Albert Einstein, William K. Frankena, R.M. Hare, Nicolai Hartmann, Martin Heidegger, G.E. Moore, P.H. Nowell-Smith, Jose Ortega y Gasset, Charles Stevenson, Paul W. Taylor, Stephen E. Toulmin, and J.O. Urmson.
    Keywords: Philosophy ; 19th & 20th Century Philosophy ; Ethics & Moral Philosophy ; bic Book Industry Communication::H Humanities::HP Philosophy::HPQ Ethics & moral philosophy ; thema EDItEUR::Q Philosophy and Religion::QD Philosophy::QDT Topics in philosophy::QDTQ Ethics and moral philosophy
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Brown Judaic Studies
    Publication Date: 2024-04-08
    Description: Robert Schine
    Keywords: BM1-990 ; Judaism ; bic Book Industry Communication::H Humanities::HR Religion & beliefs::HRJ Judaism ; thema EDItEUR::Q Philosophy and Religion::QR Religion and beliefs::QRJ Judaism
    Language: English
    Format: image/png
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-29
    Description: This report analyzes costs and savings of joint aircraft acquisition programs, whether historical joint aircraft programs have saved Life Cycle Cost (LCC) over single-service programs, whether the Joint Strike Fighter is on track to achieving the originally anticipated LCC savings, and the implications of joint fighter programs for the industrial base and for operational and strategic risk.
    Keywords: Transportation Studies ; Technology ; History ; thema EDItEUR::J Society and Social Sciences::JW Warfare and defence::JWC Military forces and sectors::JWCM Air forces and warfare ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TT Other technologies and applied sciences::TTM Military engineering ; thema EDItEUR::W Lifestyle, Hobbies and Leisure::WG Transport: general interest::WGM Aircraft and aviation
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...