ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (1)
  • 1995-1999  (3)
  • 1
    Publication Date: 2018-06-05
    Description: A three level model has been developed for the analysis of Schumann-Runge band (B(sup 3)Sigma(sup -)(sub u ) 〈- X(sup 3)Sigma(sup -)(sub g)) laser-induced fluorescence of molecular oxygen, O2. Such a model is required due to the severe lower state depletion which can occur when transitions having relatively large absorption cross-sections are excited. Such transitions are often utilized via ArF* or KrF* excimer or dye-laser excitation in high temperature environments. The rapid predissociation of the upper state prevents substantial repopulation of the lower state by collisional processes, and the lower state may be largely depleted, even at laser fluences as low as 10-100 mJ/sq cm. The resulting LIF signal in such cases no longer varies linearly with laser pulse energy, and the extent of the sublinear behavior varies with the particular rovibrational transition of interest. Relating the measured signal to the lower state population, then, necessitates the use of exceedingly low laser fluences. These low fluences in turn lead to the need to compromise spatial resolution in order to generate sufficient signal.
    Keywords: Lasers and Masers
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The vibrational relaxation of ground-state molecular oxygen (O2, X(sup 3)Sigma(sup -)(sub g)) has been observed, following stimulated Raman excitation to the first excited vibrational level (v=1). Time delayed laser-induced fluorescence probing of the ro-vibrational population distribution was used to examine the temporal relaxation behavior. In the presence of water vapor, the relaxation process is rapid, and is dominated by near-resonant vibrational energy exchange between the v=1 level of O2 and the n2 bending mode of H2O. In the absence of H2O, reequilibration proceeds via homogeneous vibrational energy transfer, in which a collision between two v=1 O2 molecules leaves one molecule in the v=2 state and the other in the v=0 state. Subsequent collisions between molecules in v=1 and v〉1 result in continued transfer of population up the vibrational ladder. The implications of these results for the RELIEF flow tagging technique are discussed.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: AIAA Paper 96-0301 , 34th Aerospace Sciences Meeting and Exhibit; Jan 15, 1996 - Jan 18, 1996; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The NASA Langley Scramjet Test Complex consists of five propulsion facilities which cover a wide spectrum of supersonic combustion ramjet (scramjet) test capabilities. These facilities permit observation of the effects on scramjet performance of speed and dynamic pressure from Mach 3.5 to near-orbital speeds, engine size from Mach 4 to 7, and test gas composition from Mach 4 to 7. In the Mach 3.5 to 8 speed range, the complex includes a direct-connect combustor test facility, two small-scale complete engine test facilities, and a large-scale complete engine test facility. In the hypervelocity speed range, a shock-expansion tube is used for combustor tests from Mach 12 to Mach 17+. This facility has recently been operated in a tunnel mode, to explore the possibility of semi-free-jet testing of complete engine modules at hypervelocity conditions. This paper presents a description of the current configurations and capabilities of the facilities of the NASA Langley Scramjet Test Complex, reviews the most recent scramjet tests in the facilities, and discusses comparative engine tests designed to gain information about ground facility effects on scramjet performance.
    Keywords: Research and Support Facilities (Air)
    Type: NASA-TM-111658 , NAS 1.15:111658 , AIAA Paper 96-3243 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 01, 1996; Lake Buena Vista, FL; United States|AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 01, 1996 - Jul 03, 1996; Lake Buena Vista, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach. The machine‐learning algorithm is trained using a global suite of seawater acetone measurements. GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both model simulations are compared to airborne observations from a recent global‐scale, multiseasonal campaign, the NASA Atmospheric Tomography Mission (ATom). We find that both CAM‐chem and GEOS‐Chem capture the measured acetone vertical distributions in the remote atmosphere reasonably well. The combined observational and modeling analysis suggests that (i) the ocean strongly regulates the atmospheric budget of acetone. The tropical and subtropical oceans are mostly a net source of acetone, while the high‐latitude oceans are a net sink. (ii) CMIP6 anthropogenic emission inventory may underestimate acetone and/or its precursors in the Northern Hemisphere. (iii) The MEGAN biogenic emissions model may overestimate acetone and/or its precursors, and/or the biogenic oxidation mechanisms may overestimate the acetone yields. (iv) The models consistently overestimate acetone in the upper troposphere‐lower stratosphere over the Southern Ocean in austral winter. (v) Acetone contributes up to 30–40% of hydroxyl radical production in the tropical upper troposphere/lower stratosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...