ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (11)
  • 2020-2024  (9)
  • 2015-2019  (2)
Collection
Source
Years
Year
  • 1
    Publication Date: 2021-02-08
    Description: Coccoliths comprise a major fraction of the global carbonate sink. Therefore, changes in coccolithophores' Ca isotopic fractionation could affect seawater Ca isotopic composition, affecting interpretations of the global Ca cycle and related changes in seawater chemistry and climate. Despite this, a quantitative interpretation of coccolith Ca isotopic fractionation and a clear understanding of the mechanisms driving it are not yet available. Here, we address this gap in knowledge by developing a simple model (CaSri–Co) to track coccolith Ca isotopic fractionation during cellular Ca uptake and allocation to calcification. We then apply it to published and new δ44/40Ca and Sr/Ca data of cultured coccolithophores of the species Emiliania huxleyi and Gephyrocapsa oceanica. We identify changes in calcification rates, Ca retention efficiency and solvation–desolvation rates as major drivers of the Ca isotopic fractionation and Sr/Ca variations observed in cultures. Higher calcification rates, higher Ca retention efficiencies and lower solvation–desolvation rates increase both coccolith Ca isotopic fractionation and Sr/Ca. Coccolith Ca isotopic fractionation is most sensitive to changes in solvation–desolvation rates. Changes in Ca retention efficiency may be a major driver of coccolith Sr/Ca variations in cultures. We suggest that substantial changes in the water structure strength caused by past changes in temperature could have induced significant changes in coccolithophores' Ca isotopic fractionation, potentially having some influence on seawater Ca isotopic composition. We also suggest a potential effect on Ca isotopic fractionation via modification of the solvation environment through cellular exudates, a hypothesis that remains to be tested.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: We assessed the potential of Calcium (Ca) isotope fractionation measurements in blood (δ44/42CaBlood) and urine (δ44/42CaUrine) as a new biomarker for the diagnosis of osteoporosis. One hundred post-menopausal women aged 50 to 75 years underwent dual-energy X-ray absorptiometry (DXA), the gold standard for determination of bone mineral density. After exclusion of women with kidney failure and vitamin D deficiency (〈25 nmol/l) 80 women remained in the study. Of these women 14 fulfilled the standard diagnostic criteria for osteoporosis based on DXA. Both the δ44/42CaBlood (p 〈 0.001) and δ44/42CaUrine (p = 0.004) values were significantly different in women with osteoporosis (δ44/42CaBlood: −0.99 ± 0.10‰, δ 44/42CaUrine: +0.10 ± 0.21‰, (Mean ± one standard deviation (SD) n = 14) from those without osteoporosis (δ44/42CaBlood: −0.84 ± 0.14‰, δ44/42CaUrine: +0.35 ± 0.33‰, (SD), n = 66). This corresponded to the average Ca concentrations in morning spot urine samples ([Ca]Urine) which were higher (p = 0.041) in those women suffering from osteoporosis ([Ca]Urine-Osteoporosis: 2.58 ± 1.26 mmol/l, (SD), n = 14) than in the control group ([Ca]Urine-Control: 1.96 ± 1.39 mmol/l, (SD), n = 66). However, blood Ca concentrations were statistically indistinguishable between groups ([Ca]Blood, control: 2.39 ± 0.10 mmol/l (SD), n = 66); osteoporosis group: 2.43 ± 0.10 mmol/l (SD, n = 14) and were also not correlated to their corresponding Ca isotope compositions. The δ44/42CaBlood and δ44/42CaUrine values correlated significantly (p = 0.004 to p = 0.031) with their corresponding DXA data indicating that both Ca isotope ratios are biomarkers for osteoporosis. Furthermore, Ca isotope ratios were significantly correlated to other clinical parameters ([Ca]Urine, ([Ca]Urine/Creatinine)) and biomarkers (CRP, CTX/P1NP) associated with bone mineralization and demineralization. From regression analysis it can be shown that the δ44/42CaBlood values are the best biomarker for osteoporosis and that no other clinical parameters need to be taken into account in order to improve diagnosis. Cut-off values for discrimination of subjects suffering from osteoporosis were − 0.85‰ and 0.16‰ for δ44/42CaBlood and δ44/42CaUrine, respectively. Corresponding sensitivities were 100% for δ44/42CaBlood and ~79% for δ44/42CaUrine. Apparent specificities were ~55% for δ44/42CaBlood and ~71%. The apparent discrepancy in the number of diagnosed cases is reconciled by the different methodological approaches to diagnose osteoporosis. DXA reflects the bone mass density (BMD) of selected bones only (femur and spine) whereas the Ca isotope biomarker reflects bone Ca loss of the whole skeleton. In addition, the close correlation between Ca isotopes and biomarkers of bone demineralization suggest that early changes in bone demineralization are detected by Ca isotope values, long before radiological changes in BMD can manifest on DXA. Further studies are required to independently confirm that Ca isotope measurement provide a sensitive, non-invasive and radiation-free method for the diagnosis of osteoporosis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2024-01-17
    Description: Background and Aims Dysregulated mineral homeostasis is common in chronic kidney disease (CKD) and associated with bone demineralization and vascular calcification. The balance between bone formation and resorption, which reflect the bone calcium (Ca) balance (BCaB), cannot be determined without bone biopsy which is invasive and not easily repeatable. Recently, we have shown that stable (i.e. non-radioactive) Ca isotopes, 42Ca and 44Ca, can be measured in serum and their ratio (δ44/42Caserum) quantitatively determines net bone gain or loss of Ca. Thus, when bone formation exceeds bone resorption, the net BCaB is positive and δ44/42Caserum is high, and when bone resorption is the predominant process δ44/42Caserum is low compared to age-matched controls. In this study we compared δ44/42Caserum against δ44/42Cabone and arterial biopsy samples (δ44/42Caartery) and the sensitivity of δ44/42Ca in predicting changes in bone histology.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Serum calcium isotopes (δ44/42Ca) have been suggested as a non-invasive and sensitive Ca balance marker. Quantitative δ44/42Ca changes associated with Ca flux across body compartment barriers relative to the dietary Ca and the correlation of δ44/42CaSerum with bone histology are unknown. We analyzed Ca and δ44/42Ca by mass-spectrometry in rats after two weeks of standard-Ca-diet (0.5%) and after four subsequent weeks of standard- and of low-Ca-diet (0.25%). In animals on a low-Ca-diet net Ca gain was 61 ± 3% and femur Ca content 68 ± 41% of standard-Ca-diet, bone mineralized area per section area was 68 ± 15% compared to standard-Ca-diet. δ44/42Ca was similar in the diets, and decreased in feces and urine and increased in serum in animals on low-Ca-diet. δ44/42CaBone was higher in animals on low-Ca-diet, lower in the diaphysis than the metaphysis and epiphysis, and unaffected by gender. Independent of diet, δ44/42CaBone was similar in the femora and ribs. At the time of sacrifice, δ44/42CaSerum inversely correlated with intestinal Ca uptake and histological bone mineralization markers, but not with Ca content and bone mineral density by µCT. In conclusion, δ44/42CaBone was bone site specific, but mechanical stress and gender independent. Low-Ca-diet induced marked changes in feces, serum and urine δ44/42Ca in growing rats. δ44/42CaSerum inversely correlated with markers of bone mineralization.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Calcium (Ca) isotopes (δ44/42Ca) in serum and urine have been suggested as novel sensitive markers of bone calcification. The response of δ44/42Ca to acute changes in Ca homeostasis, has not yet been demonstrated. We measured serum Ca and δ44/42Ca in rats maintained on a standard and a 50% Ca reduced diet for 4 weeks, and after injection of 1 mg/kg of the calcimimetic AMG-416, 24 h prior to sacrifice. AMG-416 decreased serum Ca by a maximum of 0.38 ± 0.10 and 0.53 ± 0.35 mmol/l after 12 and 6 h, respectively, in the standard and low-Ca diet groups (p = 0.0006/0.02), while serum δ44/42Ca did not change over 24 h in both groups. Urinary Ca concentrations were higher 24 h after AMG-416 injection in both groups (p = 0.03/0.06), urine δ44/42Ca was not different compared to the untreated control groups. Our data does not show acute changes in δ44/42Ca in response to a single dose of AMG-416 within 24 h after injection, possibly due to a lack of bone calcification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Serum calcium (Ca), bone biomarkers and radiological imaging do not allow accurate evaluation of bone mineral balance (BMB), a key determinant of bone mineral density (BMD) and fracture risk. We studied naturally occurring stable (non‐radioactive) Ca isotopes in different body pools as a potential biomarker of BMB. 42Ca and 44Ca are absorbed from our diet and sequestered into different body compartments following kinetic principles of isotope fractionation; isotopically light 42Ca is preferentially incorporated into bone, whereas heavier 44Ca preferentially remains in blood and is excreted in urine and feces. Their ratio (δ44/42Ca) in serum and urine increases during bone formation and decreases with bone resorption. In 117 healthy participants we measured Ca isotopes, biomarkers, and BMD by DXA and tibial peripheral quantitative CT (pQCT). 44Ca and 42Ca were measured by multi‐collector ionization‐coupled plasma mass‐spectrometry in serum, urine and feces. The relationship between bone Ca gain and loss was calculated using a compartment model. δ44/42Caserum and δ44/42Caurine were higher in children (n=66, median age 13 years) compared to adults (n=51, median age 28 years; p〈0.0001 and p=0.008 respectively). δ44/42Caserum increased with height in boys (p〈0.001, R2=0.65) and was greatest at Tanner stage 4. δ44/42Caserum correlated positively with biomarkers of bone formation (25‐hydroxyvitaminD [p〈0.0001, R2=0.37] and alkaline phosphatase [p=0.009, R2=0.18]) and negatively with bone resorption marker PTH (p=0.03, R2=0.13). δ44/42Caserum strongly positively correlated with tibial cortical BMD‐Z‐score (n=62; p〈0.001, R2=0.39), but not DXA. Independent predictors of tibial cortical BMD‐Z‐score were δ44/42Caserum (p=0.004, β=0.37), 25‐hydroxyvitaminD (p=0.04, β=0.19) and PTH (p=0.03, β=‐0.13), together predicting 76% of variability. In conclusion, naturally occurring Ca isotope ratios in different body compartments may provide a novel, non‐invasive method of assessing bone mineralization. Defining an accurate biomarker of BMB could form the basis of future studies investigating Ca dynamics in disease states and the impact of treatments that affect bone homeostasis.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Local carbonate cycling in lagoon-estuarine systems, involving processes such as inorganic and biogenic carbonate precipitation/dissolution, represents an important but poorly constrained component of the coastal carbon budget. This study investigates the sensitivity of stable Sr isotope tracer (δ88/86Sr) with respect to carbonate saturation and salinity of local waters in the Coorong, Lower Lakes and Murray Mouth (CLLMM) estuary in South Australia. The CLLMM has an extensive range of salinity from fresh to hypersaline (from ∼0 to over 100 PSU), with corresponding variations in water chemistry and major ion composition that in turn controls mineral saturation states, and thus CaCO3 precipitation/dissolution in local waters. Here we use the novel δ88/86Sr tracer in tandem with the more established radiogenic Sr isotope ratio (87Sr/86Sr), where the latter is a robust proxy for Sr sources and thus water provenance. We also produced a geochemical (PHREEQC) model of calcium carbonate (CaCO3) saturation changes across this unique lagoon-estuarine system. The results indicate a systematically increasing trend of δ88/86Sr (from ∼0.25‰ to ∼0.45‰) with increasing salinity and CaCO3 (aragonite, calcite) saturation indices of the coastal waters, which in turn suggest an overall control of carbonate dissolution/precipitation processes on the stable Sr isotope composition in the CLLMM system. This was further corroborated by Ca isotope data (δ44/40Ca) published previously on the same samples from the Coorong, as well as a quantitative simulation of local carbonate removal in the lagoon based on Rayleigh modelling and Sr isotope data. Overall, our results confirm that a coupled Sr isotope approach (combining 87Sr/86Sr and δ88/86Sr) can be used to constrain not only the main water sources (continental versus marine Sr) but also local CaCO3 dissolution/precipitation processes, and thus inorganic carbon and coastal carbonate cycling in the CLLMM system. Finally, this coupled δ88/86Sr and 87Sr/86Sr approach can be potentially applied to fossil carbonate archives to reconstruct paleo-hydrology and salinity changes in the CLLMM and/or other carbonate-producing coastal systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The boron isotopic ratio of 11B/10B (δ11BSRM951) and trace element composition of marine carbonates are key proxies for understanding carbon cycling (pH) and palaeoceanographic change. However, method validation and comparability of results between laboratories requires carbonate reference materials. Here, we report results of an inter‐laboratory comparison study to both assign δ11BSRM951 and trace element compositions to new synthetic marine carbonate reference materials (RMs), NIST RM 8301 (Coral) and NIST RM 8301 (Foram) and to assess the variance of data among laboratories. Non‐certified reference values and expanded 95% uncertainties for δ11BSRM951 in NIST RM 8301 (Coral) (+24.17‰ ± 0.18‰) and NIST RM 8301 (Foram) (+14.51‰ ± 0.17‰) solutions were assigned by consensus approach using inter‐laboratory data. Differences reported among laboratories were considerably smaller than some previous inter‐laboratory comparisons, yet discrepancies could still lead to large differences in calculated seawater pH. Similarly, variability in reported trace element information among laboratories (e.g., Mg/Ca ± 5% RSD) was often greater than within a single laboratory (e.g., Mg/Ca 〈 2%). Such differences potentially alter proxy‐reconstructed seawater temperature by more than 2 °C. These now well‐characterised solutions are useful reference materials to help the palaeoceanographic community build a comprehensive view of past ocean changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Timely and accurate diagnosis of osteoporosis is essential for adequate therapy. Calcium isotope ratio (δ 44/42 Ca) determination has been suggested as a sensitive, non-invasive and radiation-free biomarker for the diagnosis of osteoporosis, reflecting bone calcium balance. The quantitative diagnostic is based on the calculation of the δ 44/42 Ca difference between blood, urine and bone. The underlying cellular processes, however, have not been studied systematically. We quantified calcium transport and δ 44/42 Ca fractionation during in-vitro bone formation and resorption by osteoblasts and osteoclasts and across renal proximal tubular epithelial cells (HK-2), endothelial cells (HUVEC) and enterocytes (Caco-2) in transwell systems, and determined transepithelial electrical resistance characteristics. δ 44/42 Ca fractionation was furthermore quantified with calcium binding to albumin and collagen. Calcified matrix formed by osteoblasts was isotopically lighter than culture medium by -0.27 ± 0.03‰ within 5 days, while a consistent effect of activated osteoclasts on δ 44/42 Ca could not be demonstrated. A transient increase in δ 44/42 Ca in the apical compartment by 0.26‰ occured across HK-2 cells, while δ 44/42 Ca fractionation was small across the HUVEC barrier, and absent with Caco-2 enterocytes, and with binding of calcium to albumin and collagen. In conclusion, δ 44/42 Ca fractionation follows similar universal principles as during inorganic mineral precipitation; osteoblast activity results in δ 44/42 Ca fractionation. δ 44/42 Ca fractionation also occurs across the proximal tubular cell barrier and needs to be considered for in-vivo bone mineralization modelling. In contrast, the effect of calcium transport across endothelial and enterocyte barriers on blood δ 44/42 Ca should be low and is absent with physiochemical binding of calcium to proteins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...