ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-12-01
    Description: We introduce an approach for 3D joint interpretation of potential fields and its derivatives under the condition of constraining data and information. The interactive 3D gravity and magnetic application IGMAS (Interactive Gravity and Magnetic Application System) has been around for more than 30 years, initially developed on a mainframe and then transferred to the first DOS PCs, before it was adapted to Linux in the ’90s and finally implemented as a cross-platform Java application with GUI. Since 2019 IGMAS+ is maintained and developed in the Helmholtz Centre Potsdam – GFZ German Research Centre by the staff of Section 4.5 – Basin Modelling and ID2 – eScience Centre. The core of IGMAS+ applies an analytical solution of the volume integral for the gravity and magnetic effect of a homogeneous body. It is based on the reduction of the three-folded integral to an integral over the bounding polyhedrons that are formed by triangles. Later the algorithm has been extended to cover all elements of the gravity tensor as well and the optimized storage enables fast leastsquares inversion of densities and changes to the model geometry and this flexibility makes geometry changes easy. Because of the triangular model structure of model interfaces, IGMAS can handle complex structures (multi- Z surfaces) like the overhangs of salt domes and variable densities due to voxelization. To account for the curvature of the Earth, we use spherical geometries. Therefore IGMAS+ is capable to handle models from big-scale to regional and small-scale models (meters) used in Applied Geophysics.
    Description: poster
    Keywords: ddc:550 ; Potential field modelling ; Complex modelling ; Visualization ; Software development
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-22
    Description: Abstract
    Description: Despite the amount of research focused on the Alpine orogen, significant unknowns remain regarding the thermal field and long term lithospheric strength in the region. Previous published interpretations of these features primarily concern a limited number of 2D cross sections, and those that represent the region in 3D typically do not conform to measured data such as wellbore or seismic measurements. However, in the light of recently published higher resolution region specific 3D geophysical models, that conform to secondary data measurements, the generation of a more up to date revision of the thermal field and long term lithospheric yield strength is made possible, in order to shed light on open questions of the state of the orogen. The study area of this work focuses on a region of 660 km x 620 km covering the vast majority of the Alps and their forelands, with the Central and Eastern Alps and the northern foreland being the best covered regions.
    Keywords: Alps ; Forelands ; Po Basin ; Molasse Basin ; Upper Rhine Graben ; Ivrea Body ; European Crust ; Adriatic Crust ; Sediment Thickness ; Crustal Thickness ; Vosges Massif ; Black Forest Massif ; Bohemian Massif ; Mantle Density ; 4DMB ; Mountain Building Processes in 4d ; EARTH SCIENCE ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; lithosphere ; lithosphere 〉 earth's crust ; lithosphere 〉 earth's crust 〉 continental shelf 〉 continent ; lithosphere 〉 earth's crust 〉 sedimentary basin ; physical property 〉 viscosity ; science 〉 natural science 〉 earth science 〉 geophysics
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...