ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-02
    Description: We assess about 20 years of onshore and offshore subsidence along a sector of the Upper Adriatic Sea (Italy) coastal areas affected by natural soil compaction and intense anthropogenic activities such as aquifers exploitation and hydrocarbons extraction. Our approach is based on the synergistic use of independent remote sensing and in-situ geodetic data to detect and spatially characterise the deformation pattern by cross-validating the different available measurements. We collect extensive datasets from i) SAR images provided by Envisat, Cosmo- SkyMed and Sentinel-1 missions, ii) GNSS measurements from continuous stations managed by public institutions, local authorities and private companies and iii) Leveling surveys. The cross-validation analysis shows good agreement among all the independent datasets, thus providing a reliable assessment of the ongoing deformation. We detect an onshore and offshore subsidence peak of about 1/-1.5 cm/yr in the proximity of the coastline, close to Lido di Dante and Fiumi Uniti villages, and at the present offshore platform. The outcomes highlight how the integration of different remote sensing and in situ geodetic techniques is successful to retrieve deformation history in time and space in complex areas, where different natural and anthropogenic sources concur to the overall deformation pattern. Moreover, such approach provides a robust support to modelling studies for hazard assessment in both inland and shoreline areas.
    Description: Published
    Description: 102756
    Description: 1TR. Georisorse
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-16
    Description: Based on the review of the available stratigraphic, tectonic, morphological, geodetic, and seismological data, along with new structural observations, we present a reappraisal of the potential seismogenic faults and fault systems in the inner northwest Apennines, Italy, which was the site, one century ago, of the devastating Mw ~6.5, 1920 Fivizzano earthquake. Our updated fault catalog provides the fault locations, as well as the description of their architecture, large-scale segmentation, cumulative displacements, evidence for recent to present activity, and long-term slip rates. Our work documents that a dense network of active faults, and thus potential earthquake fault sources, exists in the region. We discuss the seismogenic potential of these faults, and propose a general tectonic scenario that might account for their development.
    Description: Published
    Description: 139
    Description: 2T. Deformazione crostale attiva
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-11-12
    Description: In this paper we describe the results of an experimental implementation of the recent guidelines issued by the Italian regulatory body for monitoring hydrocarbon production activities. In particular, we report about the pilot study on seismic, deformation, and pore pressure monitoring of the Mirandola hydrocarbon cultivation facility in Northern Italy. This site hosts the Cavone oil field that was speculated of possibly influencing the 2012 ML 5.8 Mirandola earthquake source. According to the guidelines, the monitoring center should analyse geophysical measurements related to seismicity, crustal deformation and pore pressure in quasi real-time (within 24–48 h). A traffic light system would then be used to regulate underground operations in case of detecting significant earthquakes (i.e., events with size and location included in critical ranges). For these 2-year period of guidelines experimentation, we analysed all different kinds of available data, and we tested the existence of possible relationship between their temporal trends. Despite the short time window and the scarce quantity of data collected, we performed the required analysis and extracted as much meaningful and statistically reliable information from the data. We discuss here the most important observations drawn from the monitoring results, and highlight the lessons learned by describing practical issues and limitations that we have encountered in carrying out the tasks as defined in the guidelines. Our main goal is to contribute to the discussion about how to better monitor the geophysical impact of this kind of anthropogenic activity. We point out the importance of a wider seismic network but, mostly, of borehole sensors to improve microseismic detection capabilities. Moreover, the lack of an assessment of background seismicity in an unperturbed situation -due to long life extraction activities- makes it difficult to get a proper picture of natural background seismic activity, which would be instead an essential reference information for a tectonically-active regions, such as Northern Italy.
    Description: “Convenzione tra il comune di San Possidonio e l’Istituto Nazionale di Geofisica e Vulcanologia -I.N.G.V.- per l’attuazione del monitoraggio nella concessione di coltivazione idrocarburi “Mirandola” finalizzata alla messa in opera di attività di monitoraggio di sperimentazione degli indirizzi e linee guida per i monitoraggi ILG ed assunzione funzioni di Struttura Preposta al Monitoraggio di cui all’art. 6 del Protocollo Operativo”
    Description: Published
    Description: 685300
    Description: 3SR TERREMOTI - Attività dei Centri
    Description: JCR Journal
    Keywords: Italian guidelines for monitoring industrial activities ; induced seismicity ; pore pressure monitoring ; deformation monitoring ; seismic monitoring ; 04.06. Seismology ; 05.09. Miscellaneous ; 04.02. Exploration geophysics ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-02-14
    Description: The global sea-level rise (SLR) projections for the next few decades are the basis for developing flooding maps that depict the expected hazard scenarios. However, the spatially variable land subsidence has generally not been considered in the current projections. In this study, we use geodetic data from global navigation satellite system (GNSS), synthetic aperture radar interferometric measurements (InSAR) and sea-level data from tidal stations to show the combined effects of land subsidence and SLR along the coast between Catania and Marzamemi, in south-eastern Sicily (southern Italy). This is one of the most active tectonic areas of the Mediterranean basin, which drives accelerated SLR, continuous coastal retreat and increasing effects of flooding and storms surges. We focus on six selected areas, which show valuable coastal infrastructures and natural reserves where the expected SLR in the next few years could be a potential cause of significant land flooding and morphological changes of the coastal strip. Through a multidisciplinary study, the multi-temporal flooding scenarios until 2100, have been estimated. Results are based on the spatially variable rates of vertical land movements (VLM), the topographic features of the area provided by airborne Light Detection And Ranging (LiDAR) data and the Intergovernmental Panel on Climate Change (IPCC) projections of SLR in the Representative Concentration Pathways RCP 2.6 and RCP 8.5 emission scenarios. In addition, from the analysis of the time series of optical satellite images, a coastal retreat up to 70 m has been observed at the Ciane river mouth (Siracusa) in the time span 2001–2019. Our results show a diffuse land subsidence locally exceeding 10 ± 2.5 mm/year in some areas, due to compacting artificial landfill, salt marshes and Holocene soft deposits. Given ongoing land subsidence, a high end of RSLR in the RCP 8.5 at 0.52 ± 0.05 m and 1.52 ± 0.13 m is expected for 2050 AD and 2100 AD, respectively, with an exposed area of about 9.7 km2 that will be vulnerable to inundation in the next 80 years.
    Description: Published
    Description: 1108
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Keywords: Sicily ; sea-level rise ; subsidence ; InSAR ; GNSS ; LiDAR
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-12-14
    Description: The 2016–2017 Central Italy earthquake sequence struck the central Apennines between August 2016 and October 2016 with Mw ∈ [5.9; 6.5], plus four earthquakes occurring in January 2017 with Mw ∈ [5.0; 5.5]. We study Global Positioning System time series including near- and far-field domains. We use a variational Bayesian independent component analysis technique to separate the post-seismic deformation from signals caused by variation of the water content in aquifers at hundreds of meters of depth and of the soil moisture. For each independent component, realistic uncertainties and a plausible physical explanation are provided. We focus on the study of afterslip on the main structures surrounding the mainshock, highlighting the role played by faults that were not activated during the co-seismic phase in accommodating the post-seismic deformation. We report aseismic deformation occurring on the Paganica fault, which hosted the Mw 6.1 2009 L'Aquila earthquake, suggesting that static stress transfer and aseismic slip influence the recurrence time of nearby (∼50 km further south of the mainshocks) segments. A ∼2–3 km thick subhorizontal shear-zone, clearly illuminated by seismicity, which bounds at depth the west-dipping normal faults where the mainshocks nucleated, also shows aseismic slip. Since afterslip alone underestimates the displacement in the far-field domain, we consider the possibility that the shear zone marks the brittle-ductile transition, assuming the viscoelastic relaxation of the lower crust as a mechanism contributing to the post-seismic displacement. Our results suggest that multiple deformation processes are active in the first 2 years after the mainshocks.
    Description: Published
    Description: e2021JB022200
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-24
    Description: We investigate crustal deformation within the upper plate of the Ionian Subduction Zone (ISZ) at different time scales by (i) refining geodetic rates of crustal extension from continuous Global Navigation Satellite System (GNSS) measurements and (ii) mapping sequence of Late Quaternary raised marine terraces tectonically deformed by the West Crati normal fault, in northern Calabria. This region experienced damaging earthquakes in 1184 (M 6.75) and 1854 (M 6.3), possibly on the E-dipping West Crati fault (WCF) which, however, is not unanimously considered to be a seismogenic source. We report geodetic measurements of extension and strain rates across the strike of the E-dipping WCF and throughout the northern Calabria obtained by using velocities from 18 permanent GNSS stations with a series length longer than 4.5 years. These results suggest that crustal extension may be seismically accommodated in this region by a few normal faults. Furthermore, by applying a synchronous correlation approach, we refine the chronology of understudied tectonically deformed palaeoshorelines mapped on the footwall and along the strike of the WCF, facilitating calculation of the associated fault-controlled uplift rates. Raised Late Quaternary palaeoshorelines are preserved on the footwall of the WCF indicating that “regional” uplift, likely related to the deformation associated either with the subduction or mantle upwelling processes, is affected by local footwall uplift. We show that GIS-based elevations of Late Quaternary palaeoshorelines, as well as temporally constant uplift rates, vary along the strike of the WCF, implying normal faulting activity through time. This suggests that (i) the fault slip rate governing seismic hazard has also been constant over the Late Quaternary, over multiple earthquake cycles, and (ii) our geodetically derived fault throw rate for the WCF is likely a more than reasonable value to be used over longer time scales for an improved seismic hazard assessment. Overall, we emphasize the importance of mapping crustal deformation within the upper plate above subduction zones to avoid unreliable interpretations relating to the mechanism controlling regional uplift.
    Description: Published
    Description: 5303
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Crustal Deformation ; Active Faults ; Marine terraces ; Earthquakes ; 04.04. Geology ; 04.03. Geodesy ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-12-01
    Description: The Global Navigation Satellite System (GNSS) represents a primary data source in Solid Earth Sciences. In order to investigate the Earth’s crustal deformation, time series of the estimated daily positions of the stations are routinely analyzed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) to investigate the deformation of the Earth’s surface caused by tectonic and non-tectonic processes. The GNSS observations of the stations are processed using the three main scientific software: GAMIT/GLOBK, BERNESE, and GIPSY OASIS II. The accuracy and the strength of geodetic solutions often depend on the geometry and spatial density of the network, and the availability and quality of GNSS data. In many circumstances, GNSS networks are deployed for topographic purposes by private or public institutions, and a significant number of GNSS stations in large regions acquire continuous observations. It may happen that such networks do not collect and distribute data according to IGS standards, so it could be difficult to analyze this data using automated data-processing tools. For that reason, this data is often ignored or partially used by the scientific community, despite their potential usefulness in geodynamic studies. We have attempted troubleshooting this problem by establishing a centralized storage facility in order to collect all available GNSS data and standardize both formats and metadata information. Here we describe the processes and functions that manage this unified repository, called MGA (Mediterranean GNSS Archive), which regularly collects GNSS RINEX files from alarge number of CORS (Continuously Operating Reference Station) located across a wide region of mainly the European and African plates. RINEX observation data and metadata information are provided to the analysts through an FTP server and dedicated web-services. The complete data set is stored in a PostgreSQL database in order to easily retrieve pieces of information and efficiently manage the archive content. The system implements many high-level services that include scripts to download files from remote archives and to detect new available data, web applications such as API (Application Program Interface) to interact with the system, and background services that interact with the database. During the development of this product, particular attention was paid to what has already been achieved by EPOS TCS WP10, whose objective was: "[...] to develop an open source platform with programmatic and web interfaces to store and disseminate raw data and metadata from GNSS stations operating in Europe''. Many ideas and tools presented here were inspired by that project.
    Description: Published
    Description: 1-18
    Description: 2T. Deformazione crostale attiva
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: 4IT. Banche dati
    Description: N/A or not JCR
    Keywords: RINEX ; GNSS ARCHIVE ; GNSS MEDITERRANEAN AREA ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-07-05
    Description: In this work we present and discuss new geodetic velocity and strain-rate fields for the Euro-Mediterranean region obtained from the analysis of continuous GNSS stations. We describe the procedures and methods adopted to analyze raw GPS observations from 〉4000 stations operating in the Euro-Mediterranean, Eurasian and African regions. The goal of this massive analysis is the monitoring of Earth’s crust deformation in response to tectonic processes, including plate- and micro-plate kinematics, geodynamics, active tectonics, earthquake-cycle, but also the study of a wide range of geophysical processes, natural and anthropogenic subsidence, sea-level changes, and hydrology. We describe the computational infrastructure, the methods and procedures adopted to obtain a threedimensional GPS velocity field, which is used to obtain spatial velocity gradients and horizontal strain-rates. We then focus on the Euro-Mediterranean region, where we discuss the horizontal and vertical velocities, and spatial velocity gradients, obtained from stations that have time-series lengths longer than 6 and 7 years, which are found to be the minimum spans to provide stable and reliable velocity estimates in the horizontal and vertical components, respectively. We compute the horizontal strain-rate field and discuss deformation patterns and kinematics along the major seismogenic belts of the Nubia-Eurasia plate boundary zone in the Mediterranean region. The distribution and density of continuous GNSS stations in our geodetic solution allow us to estimate the strain-rate field at a spatial scale of ~27 km over a large part of southern Europe, with the exclusion of the Dinaric mountains and Balkans.
    Description: The GNSS data analysis center described in this work is realized and maintained by different founding resources and projects, including EPOS-MIUR, the Department of Italian Civil Protection and Istituto Nazionale di Geofisica e Vulcanologia agreement (Annex A), Programma Operativo Nazionale (PON) GRINT, ILG Minerbio, MISE DGISSEGINGV 2020 agreement, Med-MFC. FP is supported by the project MUSE, funded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), within which the re-analysis discussed in this work has been developed.
    Description: Published
    Description: 907897
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: GNSS data processing ; time series analysis ; horizontal strain rates ; vertical ground velocities ; Euro- Mediterranean region
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...