ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (12)
  • 2020-2023  (1)
  • 2000-2004  (11)
Collection
Language
Years
Year
  • 1
    Publication Date: 2004-12-03
    Description: Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 1; 93-94; LPI-Contrib-1062
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-10-30
    Description: Knowledge of the geology, style and time history of crustal processes on the icy Galilean satellites is necessary to understanding how these bodies formed and evolved. Data from the Galileo mission have provided a basis for detailed geologic and geo- physical analysis. Due to constrained downlink, Galileo Solid State Imaging (SSI) data consisted of global coverage at a -1 km/pixel ground sampling and representative, widely spaced regional maps at -200 m/pixel. These two data sets provide a general means to extrapolate units identified at higher resolution to lower resolution data. A sampling of key sites at much higher resolution (10s of m/pixel) allows evaluation of processes on local scales. We are currently producing the first global geological map of Europa using Galileo global and regional-scale data. This work is demonstrating the necessity and utility of planet-wide contiguous image coverage at global, regional, and local scales.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 23; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-02
    Description: Even though the Early Noachian (EN) used in geologic mapping is undefined at the early end, it is often assumed in absolute chronologies to extend back to 4.6 BYA. We explored this assumption by searching for evidence of buried impact basins, in the largest occurrences of Early Noachian terrain. The hypothesis is that if such basins exist, they indicate crust which must predate the surface units mapped as the oldest on Mars, and those units must then be less than 4.6 BY old. Alternatively, if no such buried features are seen, then the surface units may represent crust of the same age below, which could in principle be as old as Mars. Here we show the former alternative is true. There must be crust older than the oldest mapped surface units. We also show that a number of Noachian terrains on Mars appear to have a common total (visible + buried) crater retention age. This might be either the age of the original (planet-wide?) crust of Mars, or may indicate crater saturation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-02
    Description: We conclude from MOC and MOLA data that the northern plains of Mars were infilled by a sediment-rich, mud ocean. Evidence for subsidence within the north polar basin and reversed channel-floor gradients are consistent with tectonic deformation due to the sediment load.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-02
    Description: The preliminary results from our investigation of the Feronia Corona area of Metis Regio shed light on the crust/mantle interactions of Venus over the last 500 million years.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: MOLA gridded data shows clear evidence for Quasi-Circular Depressions not visible on images in Early Noachian (EN) terrain units on Mars. We suggest these are buried impact basins that pre-date the superimposed craters whose high density makes these EN units the oldest visible at the surface of Mars. There is crust older than the oldest visible terrain units on Mars, and these EN units cannot date from 4.6 BYA. These and other Noachian units have similar total (visible + buried) crater retention ages, suggesting a common "pre-Noachian" crustal age OR crater saturation beyond which we cannot see.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: Knowledge of the global distribution of Europan geologic units in time and space is a necessary step for the synthesis of the results of the Galileo mission and in preparation for future exploration (namely, by JIMO) of the satellite. We have initiated the production of the first Global Geological Map of Europa. As a base map, we use the recently published global photomosaic of Europa (U.S.G.S. Map I-2757) and additional Galileo SSI images at their original resolution. The map is being produced entirely on GIS format for analysis and combination with other datasets [1]. One of the main objectives of this project is to establish a global stratigraphic framework for Europa. In the absence of a well-developed cratering record, this goal will be achieved using the satellite s global network of lineaments (ridges, ridge complexes and bands; cf. [2]). Here we present the preliminary stratigraphic framework synthesized from the sequence of lineaments derived for the northern trailing hemisphere of Europa (Figure 1, below), and we discuss its significance and some emerging implications.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Outer Solar System; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: Giant debris flows could have filled the northern lowlands with approx. 2 km of sediment in 10(exp 3) to 10(exp 5) years by catastrophic regional terrain collapse. The outburst floods and chaos zones are probably the waning stage of this process. Additional information is contained in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXII; LPI-Contrib-1080
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Description: Paleotopographic reconstructions reveal the potential existence of an enormous Noachian drainage basin in the eastern part of the Tharsis region of significant geologic and paleohydrologic implications. Additional information is contained in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXII; LPI-Contrib-1080
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: MOLA gridded data shows clear evidence for Quasi-Circular Depressions not visible on images in Early Noachian (EN) terrain units on Mars. We suggest these are buried impact basins that pre-date the superimposed craters whose high density makes these EN units the oldest visible at the surface of Mars. There is crust older than the oldest visible terrain units on Mars, and these EN units cannot date from 4.6 BYA. These and other Noa-chian units have similar total (visible + buried) crater retention ages, suggesting a common "pre-Noachian" crustal age OR crater saturation beyond which we cannot see.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 16, 2003 - Mar 20, 2003; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...