ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (10)
  • 2005-2009  (23)
  • 11
    Publication Date: 2022-03-21
    Description: Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database (PROFOUND DB) provides a wide range of empirical data on European forests to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale. A particular advantage of this database is its wide coverage of multiple data sources at different hierarchical and temporal scales, together with environmental driving data as well as the latest climate scenarios. Specifically, the PROFOUND DB provides general site descriptions, soil, climate, CO2, nitrogen deposition, tree and forest stand level, and remote sensing data for nine contrasting forest stands distributed across Europe. Moreover, for a subset of five sites, time series of carbon fluxes, atmospheric heat conduction and soil water are also available. The climate and nitrogen deposition data contain several datasets for the historic period and a wide range of future climate change scenarios following the Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, RCP8.5). We also provide pre-industrial climate simulations that allow for model runs aimed at disentangling the contribution of climate change to observed forest productivity changes. The PROFOUND DB is available freely as a “SQLite” relational database or “ASCII” flat file version (at https://doi.org/10.5880/PIK.2020.006/; Reyer et al., 2020). The data policies of the individual contributing datasets are provided in the metadata of each data file. The PROFOUND DB can also be accessed via the ProfoundData R package (https://CRAN.R-project.org/package=ProfoundData; Silveyra Gonzalez et al., 2020), which provides basic functions to explore, plot and extract the data for model set-up, calibration and evaluation.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-03-21
    Description: 29 April 2020: Release of Version 0.3 This is an updated version of Reyer et al., (2019, V. 0.1.12, http://doi.org/10.5880/PIK.2019.008). All changes and updates are documented in the changelog available via the data download section. Current process-based vegetation models are complex scientific tools that require proper evaluation of the different processes included in the models to prove that the models can be used to integrate our understanding of forest ecosystems and project climate change impacts on forests. The PROFOUND database (PROFOUND DB) described here aims to bring together data from a wide range of data sources to evaluate vegetation models and simulate climate impacts at the forest stand scale. It has been designed to fulfill two objectives: - Allow for a thorough evaluation of complex, process-based vegetation models using multiple data streams covering a range of processes at different temporal scales - Allow for climate impact assessments by providing the latest climate scenario data. Therefore, the PROFOUND DB provides general a site description as well as soil, climate, CO2, Nitrogen deposition, tree-level, forest stand-level and remote sensing data for 9 forest stands spread throughout Europe. Moreover, for a subset of 5 sites, also time series of carbon fluxes, energy balances and soil water are available. The climate and nitrogen deposition data contains several datasets for the historic period and a wide range of future climate change scenarios following the Representative Emission Pathways (RCP2.6, RCP4.5, RCP6.0, RCP8.5). In addition, we also provide pre-industrial climate simulations that allow for model runs aimed at disentangling the contribution of climate change to observed forest productivity changes. The PROFOUND Database is available freely but we incite users to respect the data policies of the individual datasets as provided in the metadata of each data file. The database can also be accessed via the PROFOUND R-package, which provides basic functions to explore, plot and extract the data. The data (PROFOUND DB) are provided in two different versions (ProfoundData.sqlite download as ProfoundData.zip, ProfoundData_ASCII.zip) accompanied by a change-log to the previous published version (changelog_Profound-DB_v03.pdf), auxiliary data of reconstructed single tree data at the site Sorø (Soroe_DBH_H_AGE_20200428.zip) and documented by the three explanatory documents: (1) PROFOUNDdatabase.pdf: describes the structure, organisation and content of the PROFOUND DB. (2) PROFOUNDsites.pdf: displays the main data of the PROFOUND DB for each of the 9 forest sites in tables and plots. (3) ProfoundData.pdf: explains how to use the PROFOUND R-Package "ProfoundData" to access the PROFOUND DB and provides example scripts on how to apply it.
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Potsdam Institute for Climate Impact Research
    In:  ISIpedia - The open inter-sectoral impacts encyclopedia
    Publication Date: 2022-03-21
    Description: Lange et al. (2020) used global climate models and global hydrological models to project how global warming might change the exposure of land and population to droughts around the world. A summary of that study including results at the global and national level is provided in the associated global ISIpedia article. Here we present additional results at the national and grid level for Turkey. Important limitations of these country-specific results are discussed in the last section of this report.
    Type: info:eu-repo/semantics/other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-03-21
    Description: Global flood models (GFMs) are increasingly being used to estimate global-scale societal and economic risks of river flooding. Recent validation studies have highlighted substantial differences in performance between GFMs and between validation sites. However, it has not been systematically quantified to what extent the choice of the underlying climate forcing and global hydrological model (GHM) influence flood model performance. Here, we investigate this sensitivity by comparing simulated flood extent to satellite imagery of past flood events, for an ensemble of three climate reanalyses and 11 GHMs. We study eight historical flood events spread over four continents and various climate zones. For most regions, the simulated inundation extent is relatively insensitive to the choice of GHM. For some events, however, individual GHMs lead to much lower agreement with observations than the others, mostly resulting from an overestimation of inundated areas. Two of the climate forcings show very similar results, while with the third, differences between GHMs become more pronounced. We further show that when flood protection standards are accounted for, many models underestimate flood extent, pointing to deficiencies in their flood frequency distribution. Our study guides future applications of these models, and highlights regions and models where targeted improvements might yield the largest performance gains.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-03-21
    Description: Background Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993–2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49% (95%CI: 3.82–7.19) and 0.81% (95%CI: 0.72–0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 °C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45% (95%CI: −0.02–1.06) at 3 °C, 1.53% (95%CI: 0.96–2.06) at 4 °C, and 2.88% (95%CI: 1.60–4.10) at 5 °C, compared to today's warming level of 1 °C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 °C versus 1 °C of GMT rise. Conclusions Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Potsdam Institute for Climate Impact Research
    In:  ISIpedia - The open inter-sectoral impacts encyclopedi
    Publication Date: 2022-03-21
    Language: English
    Type: info:eu-repo/semantics/other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-03-31
    Description: beliebiger Attribution in its general definition aims to quantify drivers of change in a system. According to IPCC Working Group II (WGII) a change in a natural, human or managed system is attributed to climate change by quantifying the difference between the observed state of the system and a counterfactual baseline that characterizes the system's behavior in the absence of climate change, where “climate change refers to any long-term trend in climate, irrespective of its cause” (IPCC, 2014). Impact attribution following this definition remains a challenge because the counterfactual baseline, which characterizes the system behavior in the hypothetical absence of climate change, cannot be observed. Process-based and empirical impact models can fill this gap as they allow us to simulate the counterfactual climate impact baseline. In those simulations, the models are forced by observed direct (human) drivers such as land use changes, changes in water or agricultural management but a counterfactual climate without long-term changes. We here present ATTRICI (ATTRIbuting Climate Impacts), an approach to construct the required counterfactual stationary climate data from observational (factual) climate data. Our method identifies the long-term shifts in the considered daily climate variables that are correlated to global mean temperature change assuming a smooth annual cycle of the associated scaling coefficients for each day of the year. The produced counterfactual climate datasets are used as forcing data within the impact attribution setup of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a). Our method preserves the internal variability of the observed data in the sense that factual and counterfactual data for a given day have the same rank in their respective statistical distributions. The associated impact model simulations allow for quantifying the contribution of climate change to observed long-term changes in impact indicators and for quantifying the contribution of the observed trend in climate to the magnitude of individual impact events. Attribution of climate impacts to anthropogenic forcing would need an additional step separating anthropogenic climate forcing from other sources of climate trends, which is not covered by our method.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-07-20
    Description: Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various Representative Greenhouse Gas Concentration Pathways, all consistently bias-corrected on a 0.5° × 0.5° global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and for nearly 17,500 lakes using uncalibrated models and forcing data from the global grid where lakes are present. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-09-29
    Description: The Working Group II contribution to the IPCC Sixth Assessment Report assesses the impacts of climate change, looking at ecosystems, biodiversity, and human communities at global and regional levels. It also reviews vulnerabilities and the capacities and limits of the natural world and human societies to adapt to climate change.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...