ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Spacecraft and space stations, similar to other habitable confined spaces such as submarines, need to provide a breathable atmosphere for their inhabitants. The inevitable production of CO2 during respiration necessitates life support systems that "scrub" the atmosphere and lower CO2 levels. Due to operational limitations associated with space flight (limited mass, volume, power, and consumables) CO2 is not scrubbed down to its terrestrial equivalent of 0.03% CO2 (ppCO2 of 0.23 mmHg), but is kept below 0.7% (ppCO2 of 5.3 mmHg), a level established in NASA s 180-day mission Spacecraft Maximum Allowable Concentration (SMAC) to be safe and unlikely to cause symptoms. Reports of space flight crewmembers becoming symptomatic with headaches, fatigue, and malaise at levels below those known to cause such symptoms terrestrially has prompted studies measuring the levels of CO2 on both the space shuttle and the space station. Data from cabin atmosphere sampling were collected on space shuttle missions STS-113, STS-122, STS-123, and International Space Station Expeditions 12-15 and 17, and the measured CO2 levels were then correlated to symptoms reported by the crew. The results indicate that a correlation exists between CO2 levels and symptomatology, however causality cannot be established at this time. While the short-term effects of elevated CO2 exposure are well known terrestrially, less is known regarding potential long-term effects of prolonged exposure to a CO2-rich environment or how the physiological changes caused by microgravity may interact with such exposures. Other challenges include limitations in the CO2 monitors used, lack of convection in the microgravity environment, and formation of localized CO2 pockets. As it is unclear if the unique environment of space increases sensitivity to CO2 or if other confounding factors are present, further research is planned to elucidate these points. At the same time, efforts are underway to update the SMAC to a lower level
    Keywords: Life Sciences (General)
    Type: JSC-CN-21882 , 82nd Annual Scientific Meeting of the Aerospace Medical Association; May 08, 2011 - May 12, 2011; Anchorage, AK; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-28719 , Aerospace Medical Association 84th Annual Scientific Meeting; May 12, 2013 - May 16, 2013; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The Exploration Medical Capability (ExMC) element is one of six elements under NASA's Human Research Program (HRP). The goal of the ExMC element is to address the risk of the "inability to adequately recognize or treat an ill or injured crewmember." This poster highlights the evidence-based approach that the ExMC element has taken to address this goal, and the ExMC element's current areas of interest.
    Keywords: Aerospace Medicine
    Type: JSC-CN-24832
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: A three-dimensional (3D) culture system for growing long-lived B lymphocytes has been invented. The capabilities afforded by the system can be expected to expand the range of options for immunological research and related activities, including testing of immunogenicity of vaccine candidates in vitro, generation of human monoclonal antibodies, and immunotherapy. Mature lymphocytes, which are the effectors of adaptive immune responses in vertebrates, are extremely susceptible to apoptotic death, and depend on continuous reception of survival-inducing stimulation (in the forms of cytokines, cell-to-cell contacts, and antigen receptor signaling) from the microenvironment. For this reason, efforts to develop systems for long-term culture of functional, non-transformed and non-activated mature lymphocytes have been unsuccessful until now. The bone-marrow microenvironment supports the growth and differentiation of many hematopoietic lineages, in addition to B-lymphocytes. Primary bone-marrow cell cultures designed to promote the development of specific cell types in vitro are highly desirable experimental systems, amenable to manipulation under controlled conditions. However, the dynamic and complex network of stromal cells and insoluble matrix proteins is disrupted in prior plate- and flask-based culture systems, wherein the microenvironments have a predominantly two-dimensional (2D) character. In 2D bone-marrow cultures, normal B-lymphoid cells become progressively skewed toward precursor B-cell populations that do not retain a normal immunophenotype, and such mature B-lymphocytes as those harvested from the spleen or lymph nodes do not survive beyond several days ex vivo in the absence of mitogenic stimulation. The present 3D culture system is a bioreactor that contains highly porous artificial scaffolding that supports the long-term culture of bone marrow, spleen, and lymph-node samples. In this system, unlike in 2D culture systems, B-cell subpopulations developing within 3D cultures that have been modified to foster lymphopoiesis retain an immunophenotype that closely recapitulates cells in fresh bone marrow harvests. The 3D culture system has been found to be capable of supporting long-lived (8 weeks) populations of B and T lymphocytes from peripheral lymphoid organs, in the absence of activation signals, to an extent not achievable by conventional culture techniques. Interestingly, it has been found that 3D-culture B cells display a phenotype that has characteristics of both B1a and B2 cells. These promising preliminary observations suggest that the 3D culture system could be used with success in the study of peripheral-B-lymphocyte biology and in the development of biotechnological techniques and processes.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23571-1 , NASA Tech Briefs, March 2010; 43-44
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The launch of the Soil Moisture and Ocean Salinity (SMOS) mission on 2 November 2009 marked a milestone in remote sensing for it was the first time a radiometer capable of acquiring wide field of view images at every single snapshot, a unique feature of the synthetic aperture technique, made it to space. The technology behind such an achievement was developed, thanks to the effort of a community of researchers and engineers in different groups around the world. It was only because of their joint work that SMOS finally became a reality. The fact that the European Space Agency, together with CNES (Centre National d'Etudes Spatiales) and CDTI (Centro para el Desarrollo Tecnolgico e Industrial), managed to get the project through should be considered a merit and a reward for that entire community. This paper is an invited historical review that, within a very limited number of pages, tries to provide insight into some of the developments which, one way or another, are imprinted in the name of SMOS.
    Keywords: Meteorology and Climatology; Earth Resources and Remote Sensing; Oceanography
    Type: GSFC-E-DAA-TN22045 , Radio Science; 49; 6; 415-449
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: SIM-Lite missions will perform astrometry at microarcsecond accuracy using star light interferometry. For typical baselines that are shorter than 10 meters, this requires to measure optical path difference (OPD) accurate to tens of picometers calling for highly accurate calibration. A major challenge is to calibrate the star spectral dependency in fringe measurements -- the spectral calibration. Previously, we have developed a spectral calibration and estimation scheme achieving picometer level accuracy. In this paper, we present the improvements regarding the application of this scheme from sensitivity studies. Data from the SIM Spectral Calibration Development Unit (SCDU) test facility shows that the fringe OPD is very sensitive to pointings of both beams from the two arms of the interferometer. This sensitivity coupled with a systematic pointing error provides a mechanism to explain the bias changes in 2007. Improving system alignment can effectively reduce this sensitivity and thus errors due to pointing errors. Modeling this sensitivity can lead to further improvement in data processing. We then investigate the sensitivity to a model parameter, the bandwidth used in the fringe model, which presents an interesting trade between systematic and random errors. Finally we show the mitigation of calibration errors due to system drifts by interpolating instrument calibrations. These improvements enable us to use SCDU data to demonstrate that SIM-Lite missions can meet the 1pm noise floor requirement for detecting earth-like exoplanets.
    Keywords: Astronomy; Optics
    Type: SPIE Astronomical Telescopes and Instrumentation 2010 Conference; Jun 27, 2010 - Jul 02, 2010; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-05-13
    Description: Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73) Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1) Tg C from cell counts and to 89 (43–150) Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr−1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2 fixation has underestimated the true rates. As a result, one can expect that future rate measurements will shift the mean N2 fixation rate upward and may result in significantly higher estimates for the global N2 fixation. The evolving database can nevertheless be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models, keeping in mind that future rate measurements may rise in the future. The database is stored in PANGAEA (doi:10.1594/PANGAEA.774851).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...