ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-03-05
    Description: The presence of hundreds of copies of mitochondrial DNA (mtDNA) in each human cell poses a challenge for the complete characterization of mtDNA genomes by conventional sequencing technologies. Here we describe digital sequencing of mtDNA genomes with the use of massively parallel sequencing-by-synthesis approaches. Although the mtDNA of human cells is considered to be homogeneous, we found widespread heterogeneity (heteroplasmy) in the mtDNA of normal human cells. Moreover, the frequency of heteroplasmic variants varied considerably between different tissues in the same individual. In addition to the variants identified in normal tissues, cancer cells harboured further homoplasmic and heteroplasmic mutations that could also be detected in patient plasma. These studies provide insights into the nature and variability of mtDNA sequences and have implications for mitochondrial processes during embryogenesis, cancer biomarker development and forensic analysis. In particular, they demonstrate that individual humans are characterized by a complex mixture of related mitochondrial genotypes rather than a single genotype.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176451/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176451/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yiping -- Wu, Jian -- Dressman, Devin C -- Iacobuzio-Donahue, Christine -- Markowitz, Sanford D -- Velculescu, Victor E -- Diaz, Luis A Jr -- Kinzler, Kenneth W -- Vogelstein, Bert -- Papadopoulos, Nickolas -- CA 43460/CA/NCI NIH HHS/ -- CA 62924/CA/NCI NIH HHS/ -- CA121113/CA/NCI NIH HHS/ -- CA57345/CA/NCI NIH HHS/ -- P50 CA062924/CA/NCI NIH HHS/ -- P50 CA062924-06/CA/NCI NIH HHS/ -- R01 CA057345/CA/NCI NIH HHS/ -- R01 CA057345-08/CA/NCI NIH HHS/ -- R01 CA121113/CA/NCI NIH HHS/ -- R01 CA121113-04/CA/NCI NIH HHS/ -- R37 CA043460/CA/NCI NIH HHS/ -- R37 CA043460-16/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Mar 25;464(7288):610-4. doi: 10.1038/nature08802. Epub 2010 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute at The Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20200521" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Child ; Colorectal Neoplasms/*pathology ; DNA, Mitochondrial/blood/*genetics ; Female ; Gene Frequency ; *Genetic Heterogeneity ; Genetic Variation ; Genotype ; Humans ; Intestinal Mucosa/cytology/pathology ; Male ; Middle Aged ; Mutation/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-02-26
    Description: The fire ant Solenopsis invicta is a significant pest that was inadvertently introduced into the southern United States almost a century ago and more recently into California and other regions of the world. An assessment of genetic variation at a diverse set of molecular markers in 2144 fire ant colonies from 75 geographic sites worldwide revealed that at least nine separate introductions of S. invicta have occurred into newly invaded areas and that the main southern U.S. population is probably the source of all but one of these introductions. The sole exception involves a putative serial invasion from the southern United States to California to Taiwan. These results illustrate in stark fashion a severe negative consequence of an increasingly massive and interconnected global trade and travel system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ascunce, Marina S -- Yang, Chin-Cheng -- Oakey, Jane -- Calcaterra, Luis -- Wu, Wen-Jer -- Shih, Cheng-Jen -- Goudet, Jerome -- Ross, Kenneth G -- Shoemaker, DeWayne -- New York, N.Y. -- Science. 2011 Feb 25;331(6020):1066-8. doi: 10.1126/science.1198734.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, 1600/1700 Southwest 23rd Drive, Gainesville, FL, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350177" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ants/genetics ; Asia ; Australia ; Bayes Theorem ; Commerce ; Computer Simulation ; DNA, Mitochondrial/genetics ; Female ; Genes, Insect ; Genetic Variation ; Genotype ; Haplotypes ; *Introduced Species ; Male ; Microsatellite Repeats ; Molecular Sequence Data ; Population Dynamics ; Sequence Analysis, DNA ; South America ; Travel ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-05
    Description: Recognition of modified histones by 'reader' proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific 'Ser 31' residue in a composite pocket formed by the tandem bromo-PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wen, Hong -- Li, Yuanyuan -- Xi, Yuanxin -- Jiang, Shiming -- Stratton, Sabrina -- Peng, Danni -- Tanaka, Kaori -- Ren, Yongfeng -- Xia, Zheng -- Wu, Jun -- Li, Bing -- Barton, Michelle C -- Li, Wei -- Li, Haitao -- Shi, Xiaobing -- CA016672/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- R01 GM090077/GM/NIGMS NIH HHS/ -- R01 HG007538/HG/NHGRI NIH HHS/ -- R01GM090077/GM/NIGMS NIH HHS/ -- R01HG007538/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Apr 10;508(7495):263-8. doi: 10.1038/nature13045. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3]. ; 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China [3]. ; 1] Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA [2]. ; Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China. ; Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3] Genes and Development Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, Teaxs 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590075" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Breast Neoplasms/*genetics/metabolism/*pathology ; Carrier Proteins/chemistry/*metabolism ; Chromatin/genetics/metabolism ; Co-Repressor Proteins/chemistry/metabolism ; Crystallography, X-Ray ; Disease-Free Survival ; Female ; Gene Expression Regulation, Neoplastic/genetics ; Histones/chemistry/*metabolism ; Humans ; Lysine/*metabolism ; Methylation ; Mice ; Mice, Nude ; Models, Molecular ; Molecular Sequence Data ; Oncogenes/genetics ; Prognosis ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA Polymerase II/*metabolism ; Substrate Specificity ; *Transcription Elongation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-29
    Description: Oesophageal cancer is one of the most aggressive cancers and is the sixth leading cause of cancer death worldwide. Approximately 70% of global oesophageal cancer cases occur in China, with oesophageal squamous cell carcinoma (ESCC) being the histopathological form in the vast majority of cases (〉90%). Currently, there are limited clinical approaches for the early diagnosis and treatment of ESCC, resulting in a 10% five-year survival rate for patients. However, the full repertoire of genomic events leading to the pathogenesis of ESCC remains unclear. Here we describe a comprehensive genomic analysis of 158 ESCC cases, as part of the International Cancer Genome Consortium research project. We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases, plus an additional 70 ESCC cases not used in the whole-genome and whole-exome sequencing, were subjected to array comparative genomic hybridization analysis. We identified eight significantly mutated genes, of which six are well known tumour-associated genes (TP53, RB1, CDKN2A, PIK3CA, NOTCH1, NFE2L2), and two have not previously been described in ESCC (ADAM29 and FAM135B). Notably, FAM135B is identified as a novel cancer-implicated gene as assayed for its ability to promote malignancy of ESCC cells. Additionally, MIR548K, a microRNA encoded in the amplified 11q13.3-13.4 region, is characterized as a novel oncogene, and functional assays demonstrate that MIR548K enhances malignant phenotypes of ESCC cells. Moreover, we have found that several important histone regulator genes (MLL2 (also called KMT2D), ASH1L, MLL3 (KMT2C), SETD1B, CREBBP and EP300) are frequently altered in ESCC. Pathway assessment reveals that somatic aberrations are mainly involved in the Wnt, cell cycle and Notch pathways. Genomic analyses suggest that ESCC and head and neck squamous cell carcinoma share some common pathogenic mechanisms, and ESCC development is associated with alcohol drinking. This study has explored novel biological markers and tumorigenic pathways that would greatly improve therapeutic strategies for ESCC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Yongmei -- Li, Lin -- Ou, Yunwei -- Gao, Zhibo -- Li, Enmin -- Li, Xiangchun -- Zhang, Weimin -- Wang, Jiaqian -- Xu, Liyan -- Zhou, Yong -- Ma, Xiaojuan -- Liu, Lingyan -- Zhao, Zitong -- Huang, Xuanlin -- Fan, Jing -- Dong, Lijia -- Chen, Gang -- Ma, Liying -- Yang, Jie -- Chen, Longyun -- He, Minghui -- Li, Miao -- Zhuang, Xuehan -- Huang, Kai -- Qiu, Kunlong -- Yin, Guangliang -- Guo, Guangwu -- Feng, Qiang -- Chen, Peishan -- Wu, Zhiyong -- Wu, Jianyi -- Ma, Ling -- Zhao, Jinyang -- Luo, Longhai -- Fu, Ming -- Xu, Bainan -- Chen, Bo -- Li, Yingrui -- Tong, Tong -- Wang, Mingrong -- Liu, Zhihua -- Lin, Dongxin -- Zhang, Xiuqing -- Yang, Huanming -- Wang, Jun -- Zhan, Qimin -- England -- Nature. 2014 May 1;509(7498):91-5. doi: 10.1038/nature13176. Epub 2014 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China [2]. ; 1] BGI-Shenzhen, Shenzhen 518083, Guangdong 518083, China [2]. ; 1] State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China [2] Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China [3]. ; 1] Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China [2]. ; State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. ; BGI-Shenzhen, Shenzhen 518083, Guangdong 518083, China. ; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China. ; Department of Tumor Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, Guangdong, China. ; Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China. ; Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670651" target="_blank"〉PubMed〈/a〉
    Keywords: Alcohol Drinking/adverse effects ; Biomarkers, Tumor/genetics ; Carcinoma, Squamous Cell/*genetics/pathology ; Cell Cycle/genetics ; Chromosomes, Human, Pair 11/genetics ; Comparative Genomic Hybridization ; DNA Copy Number Variations/genetics ; Esophageal Neoplasms/*genetics/pathology ; Exome/genetics ; Female ; Genome, Human/*genetics ; Genomics ; Histones/metabolism ; Humans ; Male ; MicroRNAs/genetics ; Mutation/*genetics ; Oncogenes/genetics ; Phenotype ; Receptors, Notch/genetics ; Risk Factors ; Wnt Signaling Pathway/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-10-02
    Description: Haploids and double haploids are important resources for studying recessive traits and have large impacts on crop breeding, but natural haploids are rare in animals. Mammalian haploids are restricted to germline cells and are occasionally found in tumours with massive chromosome loss. Recent success in establishing haploid embryonic stem (ES) cells in medaka fish and mice raised the possibility of using engineered mammalian haploid cells in genetic studies. However, the availability and functional characterization of mammalian haploid ES cells are still limited. Here we show that mouse androgenetic haploid ES (ahES) cell lines can be established by transferring sperm into an enucleated oocyte. The ahES cells maintain haploidy and stable growth over 30 passages, express pluripotent markers, possess the ability to differentiate into all three germ layers in vitro and in vivo, and contribute to germlines of chimaeras when injected into blastocysts. Although epigenetically distinct from sperm cells, the ahES cells can produce viable and fertile progenies after intracytoplasmic injection into mature oocytes. The oocyte-injection procedure can also produce viable transgenic mice from genetically engineered ahES cells. Our findings show the developmental pluripotency of androgenentic haploids and provide a new tool to quickly produce genetic models for recessive traits. They may also shed new light on assisted reproduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Wei -- Shuai, Ling -- Wan, Haifeng -- Dong, Mingzhu -- Wang, Meng -- Sang, Lisi -- Feng, Chunjing -- Luo, Guan-Zheng -- Li, Tianda -- Li, Xin -- Wang, Libin -- Zheng, Qin-Yuan -- Sheng, Chao -- Wu, Hua-Jun -- Liu, Zhonghua -- Liu, Lei -- Wang, Liu -- Wang, Xiu-Jie -- Zhao, Xiao-Yang -- Zhou, Qi -- England -- Nature. 2012 Oct 18;490(7420):407-11. doi: 10.1038/nature11435. Epub 2012 Sep 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23023130" target="_blank"〉PubMed〈/a〉
    Keywords: Androgens/*metabolism ; Animals ; Biomarkers/metabolism ; Blastocyst/cytology ; Cell Line ; Cell Nucleus ; Chimera/embryology/genetics ; Embryonic Stem Cells/cytology/*physiology ; Epigenesis, Genetic ; Female ; *Haploidy ; Male ; Mice ; Mice, Transgenic/embryology/genetics/*growth & development ; Models, Animal ; Models, Genetic ; Oocytes/cytology/growth & development/metabolism ; Pluripotent Stem Cells/cytology/physiology ; Sperm Injections, Intracytoplasmic ; Spermatozoa/metabolism/transplantation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Jun -- Izpisua Belmonte, Juan Carlos -- England -- Nature. 2014 Dec 11;516(7530):172-3. doi: 10.1038/516172a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cellular Reprogramming/*genetics/*physiology ; *Epigenesis, Genetic ; Female ; Genome/*genetics ; Induced Pluripotent Stem Cells/*cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...