ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (3)
  • 2020-2023  (1)
Collection
Years
Year
  • 1
    Publication Date: 2022-11-02
    Description: Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-19
    Description: Here we describe LegacyClimate 1.0, a dataset of the reconstruction of the mean July temperature (TJuly), mean annual temperature (Tann), and annual precipitation (Pann) from 2594 fossil pollen records from the Northern Hemisphere, spanning the entire Holocene, with some records reaching back to the Last Glacial Period. Two reconstruction methods, the modern analog technique (MAT) and weighted averaging partial least squares regression (WA-PLS), reveal similar results regarding spatial and temporal patterns. To reduce the impact of precipitation on temperature reconstruction, and vice versa, we also provide reconstructions using tailored modern pollen data, limiting the range of the corresponding other climate variables. We assess the reliability of the reconstructions, using information from the spatial distributions of the root mean squared error in the prediction and reconstruction significance tests. The dataset is beneficial for synthesis studies of proxy-based reconstructions and to evaluate the output of climate models and thus help to improve the models themselves. We provide our compilation of reconstructed TJuly, Tann, and Pann as open-Access datasets at PANGAEA (10.1594/PANGAEA.930512; Herzschuh et al., 2023a). The R code for the reconstructions is provided at Zenodo (10.5281/zenodo.7887565; Herzschuh et al., 2023b), including the harmonized open-Access modern and fossil datasets used for the reconstructions, so that customized reconstructions can be easily established.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-19
    Description: A mismatch between model-and proxy-based Holocene climate change, known as the "Holocene conundrum", may partially originate from the poor spatial coverage of climate reconstructions in, for example, Asia, limiting the number of grid cells for model-data comparisons. Here we investigate hemispheric, latitudinal, and regional mean time series and time-slice anomaly maps of pollen-based reconstructions of mean annual temperature, mean July temperature, and annual precipitation from 1908 records in the Northern Hemisphere extratropics. Temperature trends show strong latitudinal patterns and differ between (sub-)continents. While the circum-Atlantic regions in Europe and eastern North America show a pronounced Middle Holocene temperature maximum, western North America shows only weak changes, and Asia mostly shows a continuous Holocene temperature increase. Likewise, precipitation trends show certain regional peculiarities such as the pronounced Middle Holocene precipitation maximum between 40 and 50gN in Asia and Holocene increasing trends in Europe and western North America, which can all be linked with Holocene changes in the regional circulation pattern responding to temperature change. Given a background of strong regional heterogeneity, we conclude that the calculation of global or hemispheric means, which initiated the Holocene conundrum debate, should focus more on understanding the spatiotemporal patterns and their regional drivers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-14
    Description: A mismatch between model- and proxy-based Holocene climate change, known as the Holocene conundrum, may partially originate from the poor spatial coverage of climate reconstructions in, for example, Asia, limiting the number of grid-cells for model-data comparisons. Here we investigate hemispheric, latitudinal, and regional mean time-series as well as anomaly maps of pollen-based reconstructions of mean annual temperature, mean July temperature, and annual precipitation from 1676 records in the Northern Hemisphere extratropics. Temperature trends show strong latitudinal patterns and differ between (sub-)continents. While the circum-Atlantic regions in Europe and eastern North America show a pronounced mid-Holocene temperature maximum, western North America shows only weak changes and Asia mostly a continuous Holocene temperature increase but with strong latitudinal differences. Likewise, precipitation trends show certain regional peculiarities such as the pronounced mid-Holocene optimum between 30 and 40° N in Asia and Holocene increasing trends in Europe and western North America which can all be linked with Holocene changes of the regional circulation pattern linked to temperature change. Given a background of strong regional heterogeneity, we conclude that the calculation of global or hemispheric means which initiated the Holocene conundrum debate should focus more on understanding the spatio-temporal patterns and their regional drivers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...