ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (4)
Collection
Years
Year
  • 1
    Publication Date: 2020-07-11
    Description: Geochemical processes change the microstructure of rocks and thereby affect their physical behaviour at the macro scale. A micro-computer tomography (micro-CT) scan of a typical reservoir sandstone is used to numerically examine the impact of three spatial alteration patterns on pore morphology, permeability and elastic moduli by correlating precipitation with the local flow velocity magnitude. The results demonstrate that the location of mineral growth strongly affects the permeability decrease with variations by up to four orders in magnitude. Precipitation in regions of high flow velocities is characterised by a predominant clogging of pore throats and a drastic permeability reduction, which can be roughly described by the power law relation with an exponent of 20. A continuous alteration of the pore structure by uniform mineral growth reduces the permeability comparable to the power law with an exponent of four or the Kozeny–Carman relation. Preferential precipitation in regions of low flow velocities predominantly affects smaller throats and pores with a minor impact on the flow regime, where the permeability decrease is considerably below that calculated by the power law with an exponent of two. Despite their complete distinctive impact on hydraulics, the spatial precipitation patterns only slightly affect the increase in elastic rock properties with differences by up to 6.3% between the investigated scenarios. Hence, an adequate characterisation of the spatial precipitation pattern is crucial to quantify changes in hydraulic rock properties, whereas the present study shows that its impact on elastic rock parameters is limited. The calculated relations between porosity and permeability, as well as elastic moduli can be applied for upscaling micro-scale findings to reservoir-scale models to improve their predictive capabilities, what is of paramount importance for a sustainable utilisation of the geological subsurface.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-09
    Description: Cementation of potential reservoir rocks is a geological risk, which may strongly reduce the productivity and injectivity of a reservoir, and hence prevent utilisation of the geologic subsurface, as it was the case for the geothermal well of Allermöhe, Germany. Several field, laboratory and numerical studies examined the observed anhydrite cementation to understand the underlying processes and permeability evolution of the sandstone. In the present study, a digital rock physics approach is used to calculate the permeability variation of a highly resolved three-dimensional model of a Bentheim sandstone. Porosity-permeability relations are determined for reaction- and transport-controlled precipitation regimes, whereby the experimentally observed strong decrease in permeability can be approximated by the transport-limited precipitation assuming mineral growth in regions of high flow velocities. It is characterised by a predominant clogging of pore throats, resulting in a drastic reduction in connectivity of the pore network and can be quantified by a power law with an exponent above ten. Since the location of precipitation within the pore space is crucial for the hydraulic rock properties at the macro scale, the determined porosity-permeability relations should be accounted for in large-scale numerical simulation models to improve their predictive capabilities.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-31
    Description: Quantifying interactions and dependencies among geometric, hydraulic and mechanical properties of reservoir sandstones is of particular importance for the exploration and utilisation of the geological subsurface and can be assessed by synthetic sandstones comprising the microstructural complexity of natural rocks. In the present study, three highly resolved samples of the Fontainebleau, Berea and Bentheim sandstones are generated by means of a process-based approach, which combines the gravity-driven deposition of irregularly shaped grains and their diagenetic cementation by three different schemes. The resulting evolution in porosity, permeability and rock stiffness is examined and compared to the respective micro-computer tomographic (micro-CT) scans. The grain contact-preferential scheme implies a progressive clogging of small throats and consequently produces considerably less connected and stiffer samples than the two other schemes. By contrast, uniform quartz overgrowth continuously alters the pore space and leads to the lowest elastic properties. The proposed stress-dependent cementation scheme combines both approaches of contact-cement and quartz overgrowth, resulting in granulometric, hydraulic and elastic properties equivalent to those of the respective micro-CT scans, where bulk moduli slightly deviate by 0.8%, 4.9% and 2.5% for the Fontainebleau, Berea and Bentheim sandstone, respectively. The synthetic samples can be further altered to examine the impact of mineral dissolution or precipitation as well as fracturing on various petrophysical correlations, which is of particular relevance for numerous aspects of a sustainable subsurface utilisation.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-08
    Description: Barite formation is of concern for many utilisations of the geological subsurface, ranging from oil and gas extraction to geothermal reservoirs. It also acts as a scavenger mineral for the retention of radium within nuclear waste repositories. The impact of its precipitation on flow properties has been shown to vary by many orders of magnitude, emphasising the need for robust prediction models. An experimental flow-through column setup on the laboratory scale investigating the replacement of celestite (SrSO4) with barite (BaSO4) for various input barium concentrations was taken as a basis for modelling. We provide here a comprehensive, geochemical modelling approach to simulate the experiments. Celestite dissolution kinetics, as well as subsequent barite nucleation and crystal growth were identified as the most relevant reactive processes, which were included explicitly in the coupling. A digital rock representation of the granular sample was used to derive the initial inner surface area. Medium (10 mM) and high (100 mM) barium input concentration resulted in a comparably strong initial surge of barite nuclei formation, followed by continuous grain overgrowth and finally passivation of celestite. At lower input concentrations (1 mM), nuclei formation was significantly less, resulting in fewer but larger barite crystals and a slow moving reaction front with complete mineral replacement. The modelled mole fractions of the solid phase and effluent chemistry match well with previous experimental results. The improvement compared to models using empirical relationships is that no a-priori knowledge on prevailing supersaturations in the system is needed. For subsurface applications utilising reservoirs or reactive barriers, where barite precipitation plays a role, the developed geochemical model is of great benefit as only solute concentrations are needed as input for quantified prediction of alterations.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...