ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (3)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2020-03-01
    Description: Aims. We study the origin of tail-like structures recently detected around the disk of SU Aurigae and several FU Orionis-type stars. Methods. Dynamic protostellar disks featuring ejections of gaseous clumps and quiescent protoplanetary disks experiencing a close encounter with an intruder star were modeled using the numerical hydrodynamics code FEOSAD. Both the gas and dust dynamics were taken into account, including dust growth and mutual friction between the gas and dust components. Only plane-of-the-disk encounters were considered. Results. Ejected clumps produce a unique type of tail that is characterized by a bow-shock shape. Such tails originate from the supersonic motion of ejected clumps through the dense envelope that often surrounds young gravitationally unstable protostellar disks. The ejected clumps either sit at the head of the tail-like structure or disperse if their mass is insufficient to withstand the head wind of the envelope. On the other hand, close encounters with quiescent protoplanetary disks produce three types of the tail-like structure; we define these as pre-collisional, post-collisional, and spiral tails. These tails can in principle be distinguished from one another by particular features of the gas and dust flow in and around them. We find that the brown-dwarf-mass intruders do not capture circumintruder disks during the encounter, while the subsolar-mass intruders can acquire appreciable circumintruder disks with elevated dust-to-gas ratios, which can ease their observational detection. However, this is true only for prograde collisions; the retrograde intruders fail to collect appreciable amounts of gas or dust from the disk of the target. The mass of gas in the tail varies in the range 0.85–11.8 MJup, while the total mass of dust lies in the 1.75–30.1 M⊕ range, with the spiral tails featuring the highest masses. The predicted mass of dust in the model tail-like structures is therefore higher than what was inferred for similar structures in SU Aur, FU Ori, and Z CMa, making their observational detection feasible. Conclusions. Tail-like structures around protostellar and protoplanetary disks can be used to infer interesting phenomena such as clump ejection or close encounters. In particular, the bow-shock morphology of the tails could point to clump ejections as a possible formation mechanism. Further numerical and observational studies are needed to better understand the detectability and properties of the tails.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-01
    Description: Aims. The early evolution of protostellar disks with metallicities in the Z = 1.0 − 0.01 Z⊙ range was studied with a particular emphasis on the strength of gravitational instability and the nature of protostellar accretion in low-metallicity systems. Methods. Numerical hydrodynamics simulations in the thin-disk limit were employed that feature separate gas and dust temperatures, and disk mass-loading from the infalling parent cloud cores. Models with cloud cores of similar initial mass and rotation pattern but distinct metallicity were considered to distinguish the effect of metallicity from that of the initial conditions. Results. The early stages of disk evolution in low-metallicity models are characterized by vigorous gravitational instability and fragmentation. Disk instability is sustained by continual mass-loading from the collapsing core. The time period that is covered by this unstable stage is much shorter in the Z = 0.01 Z⊙ models than in their higher metallicity counterparts thanks to the higher rates of mass infall caused by higher gas temperatures (which decouple from lower dust temperatures) in the inner parts of collapsing cores. Protostellar accretion rates are highly variable in the low-metallicity models reflecting the highly dynamic nature of the corresponding protostellar disks. The low-metallicity systems feature short but energetic episodes of mass accretion caused by infall of inward-migrating gaseous clumps that form via gravitational fragmentation of protostellar disks. These bursts seem to be more numerous and last longer in the Z = 0.1 Z⊙ models than in the Z = 0.01 Z⊙ case. Conclusions. Variable protostellar accretion with episodic bursts is not a particular feature of solar metallicity disks. It is also inherent to gravitationally unstable disks with metallicities up to 100 times lower than solar.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-27
    Description: Aims. The response of a protoplanetary disk to luminosity bursts of various durations is studied with the purpose to determine the effect of the bursts on the strength and sustainability of gravitational instability in the disk. A special emphasis is paid to the spatial distribution of gas and grown dust (from 1 mm to a few centimetres) during and after the burst. Methods. Numerical hydrodynamics simulations were employed to study the dynamics of gas and dust in the thin-disk limit. Dust-to-gas friction, including back reaction and dust growth, were also considered. Bursts of various durations (from 100 yr to 500 yr) were initiated in accordance with a thermally ignited magnetorotational instability. Luminosity curves for constant- and declining-magnitude bursts were adopted to represent two typical limiting cases for FU Orionis-type eruptions. Results. The short-term effect of the burst is to reduce the strength of gravitational instability by heating and expanding the disk. The longest bursts with durations comparable to the revolution period of the spiral can completely dissolve the original two-armed spiral pattern in the gas disk by the end of the burst, while the shortest bursts only weaken the spiral pattern. The reaction of grown dust to the burst is somewhat different. The spiral-like initial distribution with deep cavities in the inter-armed regions transforms into a ring-like distribution with deep gaps. This transformation is mostly expressed for the longest-duration bursts. The long-term effect of the burst depends on the initial disk conditions at the onset of the burst. In some cases, vigorous disk fragmentation sets in several thousands of years after the burst, which was absent in the model without the burst. Several clumps with masses in the giant-planet mass range form in the outer disk regions. After the disk fragmentation phase, the spatial distribution of grown dust is characterized by multiple sharp rings located from tens to hundreds of astronomical units. The arrangement and sharpness of the rings depends on the strength of dust turbulent diffusion. The wide-orbit rings are likely formed as the result of dust-rich clump dispersal in the preceding gravitationally unstable phase. Conclusions. Luminosity bursts similar in magnitude to FU Orionis-type eruptions can have a profound effect on the dynamics of gas and dust in protoplanetary disks if the burst duration is comparable to, or longer than, the dynamical timescales. In this context, the spatial morphology of the gas-dust disk of V883 Ori, a FU Orionis-like object that is thought to be in the outburst phase for more than a century with an unknown onset date, may be used as test case for the burst models considered in this work. The potential relation of the obtained ring structures to a variety of gaps and rings observed in T Tauri disks remains to be established.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...