ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-15
    Description: In 2015, El Niño contributed to severe droughts in equatorial Asia (EA). The severe droughts enhanced fire activity in the dry season (June–November), leading to massive fire emissions of CO2 and aerosols. Based on large event attribution ensembles of the MIROC5 atmospheric global climate model, we suggest that historical anthropogenic warming increased the chances of meteorological droughts exceeding the 2015 observations in the EA area. We also investigate changes in drought in future climate simulations, in which prescribed sea surface temperature data have the same spatial patterns as the 2015 El Niño with long-term warming trends. Large probability increases of stronger droughts than the 2015 event are projected when events like the 2015 El Niño occur in the 1.5 and 2.0 ∘C warmed climate ensembles according to the Paris Agreement goals. Further drying is projected in the 3.0 ∘C ensemble according to the current mitigation policies of nations. We use observation-based empirical functions to estimate burned area, fire CO2 emissions and fine (
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-18
    Description: Based on a set of climate simulations utilizing two kinds of Earth system models (ESMs) in which observed ocean hydrographic data are assimilated using exactly the same data assimilation procedure, we have clarified that the successful simulation of the observed air–sea CO2 flux variations in the equatorial Pacific is tightly linked to the reproducibility of coupled physical air–sea processes. When an ESM with a weaker ENSO (El Niño–Southern Oscillations) amplitude than that of the observations was used for historical simulations with ocean data assimilation, the observed equatorial anticorrelated relationship between the sea surface temperature (SST) and the air–sea CO2 flux on interannual to decadal timescales could not be represented. The simulated CO2 flux anomalies were upward (downward) during El Niño (La Niña) periods in the equatorial Pacific. The reason for this was that the non-negligible correction term in the governing equation of ocean temperature, which was added via the ocean data assimilation procedure, caused an anomalous, spurious equatorial upwelling (downwelling) during El Niño (La Niña) periods, which brought more (less) subsurface layer water rich in dissolved inorganic carbon (DIC) to the surface layer. On the other hand, in the historical simulations where the observational data were assimilated into the other ESM with a more realistic ENSO representation, the correction term associated with the assimilation procedure remained small enough so as not to disturb an anomalous advection–diffusion balance for the equatorial ocean temperature. Consequently, spurious vertical transport of DIC and the resultant positively correlated SST and air–sea CO2 flux variations did not occur. Thus, the reproducibility of the tropical air–sea CO2 flux variability with data assimilation can be significantly attributed to the reproducibility of ENSO in an ESM. Our results suggest that, when using data assimilation to initialize ESMs for carbon cycle predictions, the reproducibility of the internal climate variations in the model itself is of great importance.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-13
    Description: In a multiscale simulation of a beating heart, the very large difference in the time scales between rapid stochastic conformational changes of contractile proteins and deterministic macroscopic outcomes, such as the ventricular pressure and volume, have hampered the implementation of an efficient coupling algorithm for the two scales. Furthermore, the consideration of dynamic changes of muscle stiffness caused by the cross-bridge activity of motor proteins have not been well established in continuum mechanics. To overcome these issues, we propose a multiple time step scheme called the multiple step active stiffness integration scheme (MusAsi) for the coupling of Monte Carlo (MC) multiple steps and an implicit finite element (FE) time integration step. The method focuses on the active tension stiffness matrix, where the active tension derivatives concerning the current displacements in the FE model are correctly integrated into the total stiffness matrix to avoid instability. A sensitivity analysis of the number of samples used in the MC model and the combination of time step sizes confirmed the accuracy and robustness of MusAsi, and we concluded that the combination of a 1.25 ms FE time step and 0.005 ms MC multiple steps using a few hundred motor proteins in each finite element was appropriate in the tradeoff between accuracy and computational time. Furthermore, for a biventricular FE model consisting of 45,000 tetrahedral elements, one heartbeat could be computed within 1.5 h using 320 cores of a conventional parallel computer system. These results support the practicality of MusAsi for uses in both the basic research of the relationship between molecular mechanisms and cardiac outputs, and clinical applications of perioperative prediction.
    Electronic ISSN: 1664-042X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...