ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (4)
  • 2007  (4)
Collection
Years
  • 2005-2009  (4)
Year
  • 1
    Publication Date: 2007-02-01
    Description: A lagged maximum covariance analysis (MCA) of monthly anomaly data from the NCEP–NCAR reanalysis shows significant relations between the large-scale atmospheric circulation in two seasons and prior North Pacific sea surface temperature (SST) anomalies, independent from the teleconnections associated with the ENSO phenomenon. Regression analysis based on the SST anomaly centers of action confirms these findings. In late summer, a hemispheric atmospheric signal that is primarily equivalent barotropic, except over the western subtropical Pacific, is significantly correlated with an SST anomaly mode up to at least 5 months earlier. Although the relation is most significant in the upper troposphere, significant temperature anomalies are found in the lower troposphere over North America, the North Atlantic, Europe, and Asia. The SST anomaly is largest in the Kuroshio Extension region and along the subtropical frontal zone, resembling the main mode of North Pacific SST anomaly variability in late winter and spring, and it is itself driven by the atmosphere. The predictability of the atmospheric signal, as estimated from cross-validated correlation, is highest when SST leads by 4 months because the SST anomaly pattern is more dominant in the spring than in the summer. In late fall and early winter, a signal resembling the Pacific–North American (PNA) pattern is found to be correlated with a quadripolar SST anomaly during summer, up to 4 months earlier, with comparable statistical significance throughout the troposphere. The SST anomaly changes shape and propagates eastward, and by early winter it resembles the SST anomaly that is generated by the PNA pattern. It is argued that this results via heat flux forcing and meridional Ekman advection from an active coupling between the SST and the PNA pattern that takes place throughout the fall. Correspondingly, the predictability of the PNA-like signal is highest when SST leads by 2 months. In late summer, the maximum atmospheric perturbation at 250 mb reaches 35 m K−1 in the MCA and 20 m K−1 in the regressions. In early winter, the maximum atmospheric perturbation at 250 mb ranges between 70 m K−1 in the MCA and about 35 m K−1 in the regressions. This suggests that North Pacific SST anomalies have a substantial impact on the Northern Hemisphere climate. The back interaction of the atmospheric response onto the ocean is also discussed.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-08-01
    Description: The response of the ocean to stochastic forcings is studied in a closed basin, using a simple one-dimensional analytical model. The focus is on the mechanisms that determine the time scales of the response and their possible links with free basin modes. The response may be described as a forced solution plus propagating solutions whose spatial pattern does not depend on the forcing. The propagating solutions are of two types. The first ones propagate eastward and are strongly damped so that their influence remains limited to the western boundary layer. The others are damped long Rossby waves that propagate westward and whose amplitude depends on the spatial extension and the frequency of the forcing. The amplitude increases if the frequency of the forcing is close to the frequency of the basin modes, but the spatial pattern differs from that of the latter; higher frequencies are favored if the zonal extension of the forcing is reduced. The response of a 1.5-layer reduced-gravity ocean model forced by stochastic Ekman pumping confirms the results of the analytical model.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-04-01
    Print ISSN: 0967-0637
    Electronic ISSN: 1879-0119
    Topics: Biology , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 54 (2007): 510-532, doi:10.1016/j.dsr.2006.12.014.
    Description: The influence of changes in the rate of deep water formation in the North Atlantic subpolar gyre on the variability of the transport in the Deep Western Boundary Current is investigated in a realistic hind cast simulation of the North Atlantic during the 1953–2003 period. In the simulation, deep water formation takes place in the Irminger Sea, in the interior of the Labrador Sea and in the Labrador Current. In the Irminger Sea, deep water is formed close to the boundary currents. It is rapidly exported out of the Irminger Sea via an intensified East Greenland Current, and out of the Labrador Sea via increased southeastward transports. The newly formed deep water, which is advected to Flemish Cap in approximately one year, is preceded by fast propagating topographic waves. Deep water formed in the Labrador Sea interior tends to accumulate and recirculate within the basin, with a residence time of a few years in the Labrador Sea. Hence, it is only slowly exported northeastward to the Irminger Sea and southeastward to the subtropical North Atlantic, reaching Flemish Cap in 1–5 years. As a result, the transport in the Deep Western Boundary Current is mostly correlated with convection in the Irminger Sea. Finally, the deep water produced in the Labrador Current is lighter and is rapidly exported out of the Labrador Basin, reaching Flemish Cap in a few months. As the production of deep-water along the western periphery of the Labrador Sea is maximum when convection in the interior is minimum, there is some compensation between the deep water formed along the boundary and in the interior of the basin, which reduces the variability of its net transport. These mechanisms which have been suggested from hydrographic and tracer observations, help one to understand the variability of the transport in the Deep Western Boundary Current at the exit of the subpolar gyre.
    Description: Support from the European FP6 project DYNAMITE (Contract 003903-GOCE) and the Institut Universitaire de France (to CF) is gratefully acknowledged.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...