ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (3)
  • 2000  (3)
Collection
Years
  • 2000-2004  (3)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 6 (2000), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Understanding the response of terrestrial ecosystems to climatic warming is a challenge because of the complex interactions of climate, disturbance, and recruitment across the landscape. We use a spatially explicit model (ALFRESCO) to simulate the transient response of subarctic vegetation to climatic warming on the Seward Peninsula (80 000 km2) in north-west Alaska. Model calibration efforts showed that fire ignition was less sensitive than fire spread to regional climate (temperature and precipitation). In the model simulations a warming climate led to slightly more fires and much larger fires and expansion of forest into previously treeless tundra. Vegetation and fire regime continued to change for centuries after cessation of the simulated climate warming. Flammability increased rapidly in direct response to climate warming and more gradually in response to climate-induced vegetation change. In the simulations warming caused as much as a 228% increase in the total area burned per decade, leading to an increasingly early successional and more homogenous deciduous forest-dominated landscape. A single transient 40-y drought led to the development of a novel grassland–steppe ecosystem that persisted indefinitely and caused permanent increases in fires in both the grassland and adjacent vegetation. These simulated changes in vegetation and disturbance dynamics under a warming climate have important implications for regional carbon budgets and biotic feedbacks to regional climate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9761
    Keywords: boreal forest ; climatic change ; explicit ; fire ; insects ; landscape dynamics ; model ; spatially subarctic ; transient dynamics ; treeline
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An important challenge in global-change research is to simulate short-term transient changes in climate, disturbance regime, and recruitment that drive long-term vegetation distributions. Spatial features (e.g., topographic barriers) and processes, including disturbance propagation and seed dispersal, largely control these short-term transient changes. Here we present a frame-based spatially explicit model (ALFRESCO) that simulates landscape-level response of vegetation to transient changes in climate and explicitly represents the spatial processes of disturbance propagation and seed dispersal. The spatial model and the point model from which it was developed showed similar results in some cases, but diverged in situations where interactions among neighboring cells (fire spread and seed dispersal) were crucial. Topographic barriers had little influence on fire size in low-flammability vegetation types, but reduced the average fire size and increased the number of fires in highly flammable vegetation (dry grassland). Large fires were more common in landscapes with large contiguous patches of two vegetation types while a more heterogeneous vegetation distribution increased fires in the less flammable vegetation type. When climate was held constant for thousands of years on a hypothetical landscape with the same initial vegetation, the spatial and point models produced identical results for some climates (cold, warm, and hot mesic), but produced markedly different results at current climate and when much drier conditions were imposed under a hot climate. Spruce migration into upland tundra was slowed or prevented by topographic barriers, depending on the size of the corridor. We suggest that frame-based, spatially explicit models of vegetation response to climate change are a useful tool to investigate both short- and long-term transients in vegetation at the regional scale. We also suggest that it is difficult to anticipate when non-spatial models will be reliable and when spatially explicit models are essential. ALFRESCO provides an important link between models of landscape-level vegetation dynamics and larger spatio-temporal models of global climate change.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-06-01
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...