ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (2)
  • 1985-1989  (2)
  • 1988  (2)
Collection
Publisher
Years
  • 1985-1989  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 89 (1988), S. 7201-7216 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Rotation–vibration interactions between the two lowest frequency normal modes of H2CO, the out-of-plane bend and the in-plane wag, are studied using classical trajectories. The dynamics is investigated for a range of rotational angular momenta, J, and energy values. Vibrational energy flow is elucidated by examining trajectories in several different canonical representations. The a-axis Coriolis term, which is quadratic in the normal coordinates, accounts for most of the coupling, as seen by comparing plots in the normal mode representation and one in which the Coriolis term has been subsumed into the zero-order Hamiltonian. In the former, the modes are more strongly coupled as the projection of J onto the body-fixed z axis increases; in contrast, the Coriolis adapted normal modes are more decoupled. Making use of the observed decoupling, the rovibrational Hamiltonian is reduced to an effective one degree-of-freedom rotational Hamiltonian whose dynamics depends on the vibrational excitation. Model spectra have been obtained using the semiclassical method of Gaussian wave packet propagation of Heller [J. Chem. Phys. 62, 1544 (1975)]. Semiclassical and full quantum results analogous to the observed classical dynamics are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 88 (1988), S. 4378-4390 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The highly excited vibrational states of polyatomic molecules are investigated using canonical Van Vleck perturbation theory, implemented in a superoperator framework. This approach is used to transform a vibrational Hamiltonian to a new representation which has a form ideally suited to the study of the dynamics of interest. The key advantage is that the solution to the full problem is obtained in the new representation using significantly smaller basis sets than are needed to obtain the solutions in the original representation. The transformations are applied to the Hamiltonian operator itself, not the Hamiltonian matrix; this superoperator approach obviates the need for large basis sets. The tedious and complex algebra, that is required to perform these transformations, is readily implemented with FORTRAN codes. Combining these two features has enabled the investigations of vibrational dynamics in energy regimes and densities of states, unattainable by standard methods. These methods are applied to two model problems and to the study of the highly excited overtones of CHD3 with up to five quanta of excitation in the CH bond.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...