ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • 2015-2019  (3)
  • Monthly Weather Review. 2015; 143(5): 1970-1977. Published 2015 May 01. doi: 10.1175/mwr-d-14-00363.1.  (1)
  • Monthly Weather Review. 2016; 144(8): 2855-2870. Published 2016 Jul 25. doi: 10.1175/mwr-d-16-0051.1.  (1)
  • Monthly Weather Review. 2017; 145(11): 4559-4573. Published 2017 Sep 26. doi: 10.1175/mwr-d-17-0010.1.  (1)
  • 5911
Collection
  • Articles  (3)
Years
Year
Topic
  • 1
    Publication Date: 2016-07-25
    Description: Annual maps of cloud-to-ground lightning flash density have been produced since the deployment of the National Lightning Detection Network (NLDN). However, a comprehensive national summary of seasonal, monthly, and weekly lightning across the contiguous United States has not been developed. Cloud-to-ground lightning is not uniformly distributed in time, space, or frequency. Knowledge of these variations is useful for understanding meteorological processes responsible for lightning occurrence, planning outdoor events, anticipating impacts of lightning on power reliability, and relating to severe weather. To address this gap in documentation of lightning occurrence, the variability on seasonal, monthly, and weekly scales is first addressed with NLDN flash data from 2005 to 2014 for the 48 states and adjacent regions. Flash density and the percentage of each season’s portion of the annual total are compiled. In spring, thunderstorms occur most often over southeastern states. Lightning spreads north and west until by June, most areas have lightning. New England, the northern Rockies, most of Canada, and the Florida Peninsula have a small percentage of lightning outside of summer. Arizona and portions of adjacent states have the highest incidence in July and August. Flash densities reduce in September in most regions. This seasonal, monthly, and weekly overview complements a recent study of diurnal variations of flashes to document when and where lightning occurs over the United States. NLDN seasonal maps indicate a summer lightning dominance in the northern and western United States that extends into Canada using data compiled from GLD360 network observations. GLD360 also extends NLDN seasonal maps and percentages into Mexico, the Caribbean, and offshore regions.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-26
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-01
    Description: Temporal and spatial distributions of the North American monsoon have been studied previously with rainfall and satellite data. In the current study, the monsoon is examined with lightning data from Vaisala’s Global Lightning Dataset (GLD360). GLD360 has been operating for over three years and provides sufficient data to develop an exploratory climatology with minimal spatial variation in detection efficiency and location accuracy across the North American monsoon region. About 80% of strokes detected by GLD360 are cloud to ground. This paper focuses on seasonal, monthly, and diurnal features of lightning occurrence during the monsoon season from Mazatlán north-northwest to northern Arizona and New Mexico. The goal is to describe thunderstorm frequency with a dataset that provides uniform spatial coverage at a resolution of 2–5 km and uniform temporal coverage with individual lightning events resolved to the millisecond, compared with prior studies that used hourly point rainfall or satellite data with a resolution of several kilometers. The monthly lightning stroke density over northwestern Mexico increases between May and June, as thunderstorms begin over the high terrain east of the Gulf of California. The monthly lightning stroke density over the entire region increases dramatically to a maximum in July and August. The highest stroke densities observed in Mexico approach those observed by GLD360 in subtropical and tropical regions in Africa, Central and South America, and Southeast Asia. The diurnal cycle of lightning exhibits a maximum over the highest terrain near noon, associated with daytime solar heating, a maximum near midnight along the southern coast of the Gulf, and a gradual decay toward sunrise.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...